Theoretical derivation of spin

Takahiro Nomoto
Faculty of Engineering, Niigata University, Niigata 950-2181, Japan

In four-dimensional or higher-dimensional space, spin angular momentum is not known well.
For instance, we are not sure how many components it has in four-dimensional space. In this
paper, the spin properties are theoretically derived and investigated in general-dimensional space.
Before studying spin, we review the orbital angular momentum properties first, because they are
theoretically well known even in higher-dimensional space. Then, for the orbital angular momentum,
we make a special but natural assumption, and see that it leads a quantity similar to spin or Pauli
matrices. It is remarkable that all the spin properties are derived from the one and only one
assumption. Consistency of our consideration is checked by calculating the four-dimensional version
of spin spherical harmonics and its eigenvalues. This theory may enable us to understand the double
degeneracy of spin-1/2 particles without bringing in something called spin.

I. REVIEW OF ORBITAL ANGULAR MOMENTUM

We summarize the orbital angular momentum properties in general-dimensional space before considering spin.
In n-dimensional space (hereafter n always denotes the dimension of the space), orbital angular momentum L is
defined by the wedge product of position & and momentum p:

L=xAp. (1)

By the standard basis of Euclidean space, 2-vector L can be expanded as

L= <Z :ciei> A <ijej> = Z zipje; N ej, (2)
i=1 j=1

ij=1
and using anticommutativity e; A e; = —e; A e;, it is rewritten as
1 n
L= 5 Z Lijei A\ ej (3)
i,j=1
with
Lij = xipj — x;p;. (4)

In n-dimensional space, the number of independent components of L is n(n — 1)/2 because of the antisymmetricity
of Lijl

Lij = —Lji. ()
The inner product of two general 2-vectors A = )" A;;e; Ae;, B =) B;je; Ae; is a scalar, and if an orthonormal
() 4]
basis is chosen, it can be calculated as
n
A-B=B-A=) (A;Bi;— Ai;Bji). (6)
ij=1

Note the commutativity of the inner product. The inner product of L with itself is given by
1 n
2 _ _ 2
LP=LL=33 L (7)
i,j=1

In quantum mechanics,  and p become operators, and L also becomes an operator, for example, it is represented
as

, 0 0



From canonical commutation relation
[z, p;] = ihéij, (9)
we obtain the commutation relation between arbitrary two components of L:
[Lij, Lie) = ih (8irLje + 030 Lij + OjuLei + 050 Li)- (10)
Using this commutation relation, we can show the commutativity of L;; and L2
[Lij, L] = 0. (11)
We can also see that L;; satisfies the following identical equation:
LijLyy — LigLjo + LigLjp = —ih (05 Like — 0iLje + 00 Lj). (12)
The eigenvalue problem of L? can be solved analytically. The eigenvalues are given by

R0l 4+n—2), £=0,1,2,.... (13)

II. DERIVATION OF SPIN

In Eq. (13), the values of ¢ are set to non-negative integers, but there is no necessity to do so. For instance, in
three-dimensional space (n = 3), when an eigenvalue of L? is provided by ¢(¢ + 1)h? = 642, we can adopt £ = —3 as
well as ¢ = 2. Both non-negative and negative integers are acceptable as values of /. However, in practical problems,
we do not need to mind if £ is negative or non-negative, because information about the sign of ¢ never appears in the
eigenvalues and eigenfunctions of L2. The theory of L? has the complete symmetry with respect to the interchange
of £ and —({ 4+ n —2). In Eq. (13), we just take non-negative ¢ for convenience and this is the usual manner.

Nevertheless, in this paper, we would really like to distinguish between non-negative ¢ and negative —(¢ +n — 2).
To this end, we presume that there exists a new operator which simultaneously has both the eigenvalues, hf and
—h(€+n —2). This assumption implies some kind of symmetry breaking between ¢ and —(¢ 4 n — 2), but it is known
that this symmetry is never broken as long as we see the square operator L?. Thus we suppose that there exists a
not squared orbital angular momentum operator. The beingness of the not squared operator is the only and essential
postulate of this theory.

Let us seek the not squared orbital angular momentum operator. The only clue we know is the eigenvalues of the
operator:

W, —h((+n—2), (=012,.... (14)

These eigenvalues have the dimension equivalent to the angular momentum. Note that the operator we are looking
for is not L itself, because L is a 2-vector operator and its eigenvalues must be 2-vector also. Scalar eigenvalues (14)
require an operator with scalar form. Therefore, using the inner product of 2-vectors, we assume the form of the
operator as

Lo (15)
with
1 n
o = gijzzlo’ijEi/\eﬁ (16)

where o is an undetermined 2-vector operator. In general, the components of & do not need to have the antisym-
metricity

Tij = —0ji, (17)
but using the anticommutativity of wedge product, we can always make o to be antisymmetric. In fact, if we transform

Eq. (16) as

1 1
o = 5 Z 5(0'%] _Uji) ei/\ej (18)



and regard (o;; —0;;)/2 as a new component of o, the obtained new components have the antisymmetricity. Hereafter
we always assume the antisymmetricity of 0;;. Using Eq. (6), we rewrite Eq. (15) as

1 n
L-O’ = 5 Z Lijaij- (19)

4,5=1

In the rest of this section, we fix the form of the not squared operator as Eq. (19) and study the properties of the
undetermined coefficient o .
From Eq. (14), it is obvious that the eigenvalues of L-o are real numbers. This means that L-o is Hermitian:

Lo=(Lo). (20)
The commutativity of the inner product requires
Lo=o-L, (21)
and Eq. (20) yields
o L=oc'L. (22)

To make this relation hold, we just take o as a Hermitian operator:
o=o'. (23)

This is the first property of o.

Practical measurement and observation of L-o for a certain eigenstate permits us to know the eigenvalue of L? for
the same state. For instance, in three-dimensional space, when eigenvalue —3h is obtained by measurement of L-o,
we will always obtain eigenvalue 672 in the succeeding L? measurement for the same state. This indicates that L-o
and L? can be observed simultaneously and it is mathematically written as

[L-o,L?] = 0. (24)
In order to make this commutation relation hold, we require more fundamental or strong commutation relation:
[UijaLkA:O7 iajak,ez]-v"'an' (25)

This commutation relation suggests that o;; is like a constant; in other words, o;; does not contain position xj or
differential operator 0/0xy, (see Eq. (8)). This constant assumption is not so artificial because L-o is thought to be a
scalar version of L, and o;; seems to be corresponding to e; Ae; in Eq. (3), which is also like a constant in Euclidean
space (compare the right-hand sides of Eq. (3) and Eq. (19)). To prove Eq. (25) yielding Eq. (24), we expand the
left-hand side of Eq. (24) as

1 n
[L-O',LQ] = 5 Z (LZJ[O’”,LQ] + [Lij,LQ]U'ij). (26)
i,j=1
From Egs. (11) and (25), this expression immediately becomes zero. The commutation relation (25) is the second

property of o.
Lastly, let us see the most important relation which characterizes o. Two identities

(h0)% + h(n — 2) (W) = h2L(L +n — 2),

27
(=h(l+n— 2))2 +nh(n—2)(=h(l+n—2)) =R(+n—2) @)

imply that the following operator identity holds:
(L-0)*+ h(n—2)L-o = L*. (28)

The operator o should be determined such that it satisfies Eq. (28). In order to be able to compare the both sides of
the equation, we will represent L by position  and momentum p. First, we expand the right-hand side of Eq. (28)
as

n n

1

L= 9 Z (Iipj - xjpi)(xipj - -rjpi) = Z (.%‘ipjmipj — xipjxjpi)_ (29)

i.j=1 i.j=1



Then we use the canonical commutation relation (9) so as to move all xy to the left of pg, as follows:

L? = Z (izip;p; — xixjpipj) + ih(n — 1) inpi. (30)
ij=1 i=1

In the same manner, the left-hand side of Eq. (28) is expanded as

1 iln —2) <
(L-0)>+h(n—2)L 1 Z OkeLii; Lie + s 4;1 oijLij
Z 0ijOkeT;PjTkPe + h n - Z 05 TiPj
7,7=1
= 1jOkeT; TEP;De + ih Z OikOkTiP; + h n - Z Oi5LiPj- (31)
0,5 ksl= ird,k=1 6=l

Now, we divide the first summation about k, ¢ into two parts. One contains the cases (k,?) = (¢,7), (j,4) and the
other does not contain them:

(L-o)?+h(n—2)L-o= Z U%(%Jiipjpj — z;x;pipj) + Z Z 03O keT; TP De
ig=1 ij=1 {k.t}
#{i.j}
3 (S =it 2)0 Yy )
i,5=1
Comparing Eq. (32) with Eq. (30), we obtain the two identities:
> ol (mimipip; — wiwipipg) + Y, > Cijon@imkpipe = Y (@irip;pj — Tia;pip;), (33)
ij=1 ij=1 {k,0} ij=1
#{i,3}
Z (Z Oik0 ik — i(n — Z)Uij>xipj =(n-1) Z TiDi- (34)
ij=1 “k=1 i=1
Equation (33) provides the two conditions:
o2 =1 fori#j, (35)
n
. Y oionwiaipipe = 0. (36)
=1 {k0}

#{i,5}
For Eq. (34), we divide the summation about j into two parts, j = and j #
Z Z ohTipi + Z (Z ook —i(n — 2)%3)%27;' =(n-1) szpz (37)
i=1 k=1 i#] i=1
Then, using Eq. (35), we obtain
Z <Z OikOjk — z(n - Q)O—ij)xipj = 0. (38)
i#j k=1

This equation holds only when each coefficient of all z;p; is equal to zero, that is,

Z ook =i(n—2)o;;  for i #j. (39)



The same is true of Eq. (36), namely, all the coefficients of z;x;p;p, must be zero. However in this case, we must
take care the commutativity of z; and zy, or p; and pe. The coefficient of z;xxp;pe is not o;j0ke only but (o0 +
OkjOit + 0ie0k; + 0reoi;). With attention to the summation indices range, Eq. (36) provides the following condition:

0ijOke + OkjOip + Oip0k; + 0105 = 0 for three or four different index values. (40)

Summarizing all the above, we have obtained the following properties of o:

o=oa', (41)
[Uij,Lkg] =0, L5,k 0=1,...,n, (42)
035 = —0ji, i,j=1,...,n, (43)
UZ‘ =1, for i # 7, (44)
Zaikojk =i(n —2)oy,, for i # j, (45)
k=1
0ij0ke + OO + 0400 + Opeoyj = 0, for three or four different index values. (46)

These are the most general properties of o, though Eqgs. (45) and (46) are somewhat complicated. We will simplify
these two conditions in the next section.

III. ALGEBRAIC STRUCTURE

Equation (45) contains the summation symbol > . This summation is troublesome in high-dimensional space,
though it disappears in low-dimensional space. Therefore, we examine the algebraic structure of o especially in low-
dimensional space. As a matter of fact, this low-dimensional simplicity can be inherited to higher-dimensional space
if we keep the low-dimensional expressions unchanged. In this section, we will seek a simpler alternative to Eq. (45)
by mathematical induction.

In the case of n = 2 In two-dimensional space, o1 is the only significant component of . The remaining
components are not independent: 017 = 022 = 0, 021 = —012. Among the above equations (41)—(46), non-trivial
conditions are the first four, and in particular, the condition (44) is important:

ofy = 1. (47)

As a concrete 012, we can take the identity operator for example, which is Hermitian, commutes with L and satisfies
Eq. (44).

Rather, we had better not introduce o in two-dimensional space, where L5 is the only independent component
of L, and L? is simply written as LZ,. The reason is made clear by observing two-dimensional subspace of three-
dimensional space. In ordinary three-dimensional quantum mechanics, we usually write L1y as L, and its eigenvalue
as hm with m = 0,£1,42,..., and we do not see the square operator L2 and the square eigenvalue h?m? (h?m?
corresponds to eigenvalue (13)). Not to mention, we never introduce o to distinguish between non-negative m and
negative —m with the restriction m > 0. The same goes for pure two-dimensional space, and there is no need to use
the square operator L2 = L2 or to introduce o. We have only to use Lis from the beginning.

In the case of n = 3 This case corresponds to ordinary quantum mechanics. The operator o has three
independent components:

012, 013, 023. (48)
Equation (45) provides
013023 = 1012, 023013 = 1021,
012032 = 1013, 032012 = 1031, (49)
021031 = 1023, 031021 = 1032,

and these are put together as

OikOjk = 104 for three different index values. (50)



From this relation and the antisymmetricity (43), we find
OikOjk = 1045 = —10j; = —0 R0k (51)
and obtain the anticommutativity
o0 = —0,0;,  for three different index values. (52)

With regard to Eq. (46), it also leads the anticommutativity (52) as proved in the following. In three-dimensional
space, there are not more than three different index values, and it reduces Eq. (46) to the following non-trivial two
cases. Oneis £ =k

0ijOkk + OkjOik + 0ik0kj + oppoy; =0 for three different index values, (53)
and the other is £ = j
0ij0kj + Okj0ij + 0450k + oxjoi; =0 for three different index values. (54)

It is obvious that both cases yield Eq. (52), and we know that the complicated conditions (45) and (46) are reduced
to the simple condition (50).
The operator o can be represented by Pauli matrices (o4, 0y,0;) if we set

O12 = 0, 013 = —0y, 023 = 0 (55)

with
01 0 —i 10
”@Z{loy "y:[z’ 0]’ 02:{0 —1]' (56)

In the case of n =4 In four-dimensional space, the operator o has the six independent components:

012, 013, 014, 023, 024, 034- (57)

Equation (45) provides

013023 + 014024 = 200712,
012032 + 014034 = 20013,
012042 + 013043 = 20014,
021031 + 024034 = 21023,
021041 + 023043 = 2i024,

031041 + 032042 = 21034,

023013 + 024014 = 20021,
032012 + 034014 = 20031,
042012 + 043013 = 21041,
031021 + 034024 = 21032,
0410921 + 043023 = 2i042,

041031 + 042032 = 20043.

(58)

These relations are somewhat complicated, but if we assume that Eq. (49) holds in four-dimensional space without
change, some of the relations in Eq. (58) reduce to

014024 = 1012,

024014 = 1021,

014034 = 1013, 034014 = 1031, (59)
024034 = 1023, 034024 = 1032.
Then, these six equations can be expressed as
004 =toy;  fori,j <3, i#j, (60)
and multiplying Eq. (60) by ;4 from the left or by 0,4 from the right yields
04;0j; = 1045, 0ij045 = 1054 for i,5 <3, i #£j. (61)
Combining Eq. (60) and Eq. (61), we obtain the general expression:
OikOji = 104 for three different index values. (62)



Like the case of n = 3, Eq. (62) provides the anticommutativity:
OikOjk = —Ojk0ik for three different index values. (63)

Let us see the last condition (46). As with the case of n = 3, Eq. (46) provides the anticommutativity (63) when
two of the four indices have the same value. Therefore, it is only necessary to consider the case where all the indices
1,7, k, ¢ have different values. When all the indices are different, Eq. (62) yields the anticommutativity on indices as
follows:

030k = —104040ke = 1040054 = —0;p0kj. (64)
In a similar way, it follows that
OkjOit = —Oke0ij, (65)
and adding Eq. (64) and Eq. (65), we obtain
0ij0kt + OkjOit + 0ie0k; + ogeoi; = 0. (66)

Therefore, we do not have to consider the complicated condition (46) because it can be deduced from the more
fundamental relation (62). By the same calculation as Eq. (64), we can show the following commutativity:

0ij0ke = ogeo;  for four different index values. (67)

This commutativity is important in considering matrix representation of o.

In the case of n > 5 Consider the case of n = N with NV > 5. Here, suppose that we have already obtained the
following equation in (N — 1)-dimensional space:

o0k = io;;  for three different index values. (68)

Now, we inductively prove that Eq. (68) also holds in N-dimensional space if the relation o;,0;, = i0;; is assumed as
correct for the index subset i, j,k < N — 1. In the case of i, j # N, the left-hand side of Eq. (45) can be calculated as

N N-1
Zgikajk: <ZO’Z‘]€U]‘k) —I—O'Z'NO'jN:i(N—?))O'ij + OiNOjN fori,j < N—1, i#j, (69)
k=1 k=1

and the whole of Eq. (45) becomes
OiNOjN = 10}, fori,j < N —1, 1 #j. (70)
Then, multiplication of this equation by o;n from the left or by o;x from the right yields
ONiOji = 10N, OijON; = i0;N fori,j < N —1, i #j. (71)

Combining Eq. (70) and Eq. (71), we know that Eq. (68) also holds in N-dimensional space, and by mathematical
induction, it holds for all n > 3. Note that the anticommutativity o;,0;r = —0 ;104 is automatically satisfied when
Eq. (68) holds, and it leads Eq. (46).

For arbitrary dimensions, the components of the Hermitian operator o has the following algebraic structure:

0ij = —0ji, (72)

on =1, for i # j, (73)
OikOjk = 1045, for three different index values, (74)
OikOjk = —0jk0ik, for three different index values, (75)
0ij0kt = OkeTij, for four different index values. (76)

Equations (75) and (76) are derivative of Eq. (74), but we leave them written down for convenience. From Eqs. (72)-
(76), we can make sure that the following commutation relation holds:

[Uij,du] = 2i(6ikoﬂ + (mokj + 5jk04i + 5jZJik:)~ (77)



If we define an operator S as

it satisfies the angular momentum commutation relation:
[Sij, Skg] = iﬁ(éiije + 5ieSkj + (Sij&' + 5ngik). (79)

In the case of n = 3, the operator S is identified with spin of ordinary quantum mechanics. Note that S does not
satisfy a relation similar to Eq. (12) when all the four indices i, j, k, ¢ have different values.

IV. MATRIX REPRESENTATION
We represent the components of o by matrices in such a way as to hold the algebraic structure (72)—(76).

General properties We will see the general properties of a matrix o;; before studying matrix representation
concretely. First and most obviously, o;; is a Hermitian matrix. In addition, o;; must be a unitary matrix because
the matrix version of Eq. (73),

2 _

o =1 (80)

)

;=00 = O‘Z-T-. Note that the imaginary unit ¢ in Eq. (74) prevents all components being real matrices for

gives o; y

n > 3.
Hermitian matrices can always be diagonalized by proper unitary matrices. Here, we use the notation U for a
unitary matrix which diagonalizes o;;. Multiplication of Eq. (80) by U,U~! yields

(U o, ;U)U o U) = 1. (81)

This equation indicates that the eigenvalues of ¢;; are 1 or —1 only. For n > 3, making use of Egs. (73) and (75)
yields

Tij = 0ij0jk0jk = —0jk0ij0jk- (82)
With the trace property tr (AB) = tr (BA), the trace of Eq. (82) is given by
tro;; = —troy, (83)
and we obtain
tro;; =0 for n > 3. (84)

Note that this traceless property prevents us from using +I as components of o. The traceless property also holds
for diagonalized o;:

tr (U o ;U) =0  forn>3. (85)

This implies that the number of eigenvalue 1 is equal to that of —1, and the order of matrices must be an even number
for n > 3. When the order of o;; is given by 2k, the determinant is calculated as

det 0ij = det(Uﬁl()'ijU) = (7].)]C (86)

Here, we prove that a representation matrix of a certain component 0;; must be different from representation
matrices of all the other components of o. For n > 3, there exist two independent components o;; and o ({3, j} #
{k,?}), and temporarily suppose that both are represented by the same matrix. This assumption implies that the
matrices 0;; and o are commutative and it means that all the four indices 4, j, k, ¢ must be different from one another
because of Egs. (75) and (76). In three-dimensional space, where we can never select four different index values, the
necessity of four different values is apparent contradiction and it suggests that the initial assumption is wrong. In
the case of n > 5, we can always pick out four different indices i, j, k, ¢ without problems, and in addition, one
more different index m. With these five different indices, we can image three independent components oy, i, Tom.



From Egs. (75) and (76), the three components must satisfy the following commutation relation and anticommutation
relation:
0ij0tm = Oem0ij, OktOpm = —0pmOkt- (87)
Now, remember o;; = oy as matrices, and then Eq. (87) becomes
0ij0tm = Oum0ij, 0ij0tm = —0em0ij, (88)
and these yield
0ij0em = 0. (89)
The multiplication of Eq. (89) by o4, from the right gives
oi; = 0. (90)

However, the zero matrix cannot satisfy Eq. (73), and it indicates that the initial assumption o;; = oy is wrong.
Thus all the representation matrices must be different from one another except the case n = 4.
To summarize the above, a representation matrix o;; has the following properties:

(P,

e Both Hermitian and unitary matrix: o;; = 0,; = 0,5

e For n > 3, 0y; is an even order matrix and is not the identity matrix;
e For n > 3, when the order of o;; is 2k, the trace and determinant are given by tr (0;;) = 0, det (0;;) = (—1)%;
e Except n = 4, the representation matrix of o;; is different from those of all the other components.

In the following, we will concretely seek representation matrices of o;; in low-dimensional spaces (n = 3,4,5,6).
We are particularly interested in constant representation, which does not depend on any parameters. Once a certain
representation is found, then other representations will be generated by unitary transformations of the representation
because the algebraic structure (72)—(76) is preserved under unitary transformations.

In the case of n = 3 In three-dimensional space, the possible orders of representation matrices are 2,4,6,. ...
For simplicity, we seek 2 x 2 matrix representation first. Larger size matrices are examined only when suitable
representations cannot be found within 2 x 2 matrices.

In general, a traceless 2 x 2 Hermitian matrix has the following form:

P q+ir 1)
qg—1ir —p |’
where p, g, r are real numbers. The unitarity and the determinant —1 property both yield
PP+ +ri=1. (92)

The three independent components o1, 013, 023 must satisfy Eq. (74) and Eq. (92) simultaneously. As a trial, we fix
the form of the primary component o12 to be diagonal:

1 0
012 =0z = |:0 _1:| ) (93)

where o, is the Pauli matrices notation (56). The remaining two components 013,023 must be determined so that
both anticommute with o15. The anticommutator between o2 and the matrix (91) is

1 0 p q+r p gq+w||1l 0| |2p O

{0 —1] [q—ir —p }—F[q—ir —p | lo=1|T |0 2| (94)
This equation tells that o135 and o93 cannot have the diagonal entries (p = 0). Taking account of the correspondence
to the Pauli matrices, we decide to choose the matrix oo3 as

01
023 = Ogp — |:1 0:| (95)
From the relation 013 = 1012023, the form of 013 is automatically settled as
0 ¢
013 = —0y = [—i 0:| . (96)

We can make sure that the set of the three matrices 019, 013, 023 satisfies Eq. (74) properly.
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In the case of n =4 In four-dimensional space, o has six independent components. Like the three-dimensional
space, we try to seek representation within the limits of 2 x 2 matrices.
First, for the subset 012, 013, 023, we elect to use the same representation as n = 3:

012 =0y, 013 = —0Oy, 023 = 0. (97)

The remaining components 014, 024, 034 must have the matrix form (91) also. From the condition (76), we can see
that o34 commutes with 015, and so consider the commutator between o2 and the matrix (91):

[(1) —OJ [qfir quir} B [qfir quﬂ] [(1) —OJ - [—2@0—”) Rt (98)

This indicates that the non-diagonal entries of o34 must be zero, and the form is restricted to

0
{g p], p=+l. (99)
The case p = 1 leads the matrix equality o34 = 012, and the case p = —1 leads 034 = 021, but four-dimensional space

exceptionally allows to assign one specific matrix to two or more components of . Here we choose the case p = 1:
10
The remaining components 014 and 094 are automatically determined as follows:

. 01
014 = 1013034 = [1 O] , (101)

. 0 —2
O94 = 1093034 = [z OZ] . (102)

Direct calculation shows that the obtained matrices fulfill all the conditions (72)—(76).

In the case of n = 5,6 In five-dimensional space, the four new components 15, 025, 035, 045 are added, and the
total number of independent components becomes ten. First of all, we must extend n = 4 representation

012 =0z, 013 = —0y, 023 = O, (103)
014 = O0g, 024 = Oy, 034 = 02

to suitable form, because in five-dimensional or higher-dimensional space, it is forbidden to assign a certain matrix to
two or more components of o. To this end, we raise the size of the matrices to 4 x 4.

The tensor product is a simple way to extend 2 x 2 matrices to 4 x 4. Generally, the tensor product of a p X ¢
matrix A = [a;;] and an r X s matrix B = [b;;] is the pr x ¢s matrix with the following form:

allB aqu
A®B = T (104)

ap.lB ... apgB
Note that block matrix notation is used in this equation. The multiplication of two tensor products is calculated as
(A® B)(C® D) = (AC) ® (BD). (105)
The Hermitian conjugate of tensor product is
(A® B)f = At @ B. (106)
Using the tensor product, we simply extend the subset 012,013,023 to 4 X 4 matrices as follows:

10 =0,R1, (713:—0':[/(8)1'7 093 =0, 1, (107)
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where I is the identity matrix of size 2. For 014,024, 034, we choose the following representation so that six matrices
are all different from one another:

014 =03 0, O =0y R0, O34 =0, R 0,. (108)

We can make sure that matrices (107), (108) satisfy the n = 4 algebra properly.

Let us determine the remaining four components o5, 095, 035,045 within the tensor product form of two Pauli
matrices. To begin with, note that 045 is commutative with the matrices (107) and anticommutative with (108). It
restricts the possible forms of 045 to £(I ® 0,) or £(I ® 0,). Here we choose the following form in an arbitrary
manner:

o455 =1 ® oy (109)
With Eq. (105), the remaining components are automatically determined from the relation o5 = i0;4045:
O15 = —0, 0y, Oy5=—0,Q0y, 035=—0,Q0,. (110)

In the same way as n = 5, we can find n = 6 matrices easily. If the above ten matrices are adopted without change,
all we have to do is to set the remaining five components 014, 026, 036, 046, 056 properly. Note that the last component
056 commutes with the six matrices (107), (108). This commutativity restricts the possible forms of 056 to (I ® o),
and here we choose

0'56:I®0'Z. (111)
From the relation o;5 = i0;5056, the remaining four components are automatically determined as
16 = 0z Q 0y, 026 = 0y @ 0, 036 = 0, ® 0y, o6 =1® 0y (112)

Now we have obtained all the matrices of n = 5,6 with consideration of only a part of the necessary conditions.
However, by calculation, we can check that all the conditions (72)—(76) are exhaustively satisfied. The result of
n = 5,6 is explicitly written as follows (no entries indicates 0):

1 [ 1
— _ 1 _ _ i _ _ 1
012—0z®f—[ 1 ]7 013—_0y®1—|:i ], 023—0;1:@1—{1 }7
-1 —1 1
L —i ty
0'14:0'a:®0-z:|:1 _:|, 024:0-y®0-z:|:i Z:|a U34:02®UZ:|:_1 :|’
—1 —1q 1
L 11 -
0'15:_0-a:®0-y:|: i ]’ 025=—Uy®0y:{1 }7 ‘735:_‘72@03/:[ _1}7
—i 1 i
1 —t 11
— — 1 — — —1 — —
0-16_0.3?®0-£C_ { 1 :|7 026_0y®032_ |: i ' :|) 036_02®0$_ { _1:|,
1 i -1
1 -t 11
— — |1 — — i — — —
045I®0m|: 1:|7 0'461®0'y|:1 i:|’ 0'56[®O'Z|: 1 :|
1 i —1

Representation matrices in higher-dimensional spaces are given in Appendix.

V. EXAMPLE

Let us solve the eigenvalue problem of L-o in four-dimensional space (n = 4). Here we adopt the 2 x 2 matrix
representation (103). The operator L-o is expressed as

Lo Lis + L3y (L2 + L1a) — i(L31 + Las) (113)
(Lo3 + Lis) + i(L31 + Log) —(L12 + Ls34) ’
or simply written as
M M_
vo-| i M (114)
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with
M = L12 —+ L34, M:t = (L23 + L14) + i(Lgl + L24). (115)

The eigenvalue equation is
M M_||lu U
o S = fE] we

where A and [g] stand for the eigenvalue and eigenvector of L-o respectively. If our consideration in the previous

sections is valid, we will obtain eigenvalues A = iil, —A(£ + 2). We will verify it in the following.
First we study the properties of M, M. Using Eq. (10), we can make sure of the following commutation relations:

[M,My] = £2h M, (117)
[My,M_] =4hM. (118)

The anticommutation relation between M, and M_ is given by
MyM_ +M_My =2 ((Las + L1a)* + (Ls1 + L24)?) . (119)

Further, adding M?, we notice the following equation,
1
M? + 9 (MyM_ +M_M,) = L*+2(Li2Lss — L13Los + L14Los), (120)

and making use of Eq. (12), the anticommutation relation is rewritten as
M M_+M_ M, =2L*—-2M>* (121)
The sum and difference of Eq. (118) and Eq. (121) provide
My M_ = L? — M? + 2hM, (122)
M_M, = L? — M? — 2hM. (123)

From Eq. (11), it is obvious that L? and M are commutative, and it implies that simultaneous eigenfunctions of
L? and M exist. A simultaneous eigenfunction y satisfies the following eigenvalue equations:

where A and y are eigenvalues. We have already known the eigenvalues of L? in four-dimensional space, A = h2(({+2)
with £ =0,1,2,..., but we go forward without the knowledge here. The eigenfunction y is supposed to be normalized:
[ ka2 =1, (125)

SB

where S is the surface of the 3-sphere. Note that A never becomes negative because of
A= / y* Ly df2 = / (Ly)* (Ly)dR > 0. (126)
53 53

Now we will show that a function M,y is one of the simultaneous eigenfunctions of L? and M when y satisfies
Eq. (124). From the commutation relation (11), M,y is obviously an eigenfunction of L? with eigenvalue A:
L2 (Myy) = A(Myy). (127)
With regard to the operator M, we obtain eigenvalue p + 2h from Eq. (117):
M(Myy) = (1 +2h) (M ). (128)
Similarly, M_y is one of the simultaneous eigenfunctions of L? and M:
L2(M_y) = A(M_y), (129)
M(M_y) = (n—2h)(M_y). (130)
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Therefore, once we find some simultaneous eigenfunction y, then we can immediately find a series of simultaneous
eigenfunctions M1y, M2y, ... with eigenvalues pu+2h, p+4Ah,.... At a glance, there seem to exist an infinite number
of simultaneous eigenfunctions for the operator M, and eigenvalue p has no upper or lower limits. However they are
not true,2and eigenvalue 1 is bounded as proved below. With the relation M l = M_ and Eq. (123), the integration
of |[Myy|* is

/ |M,y|>d2 = / y*M_M,ydQ = / y*(L? — M? — 2hM) yd2 = A — i — 2hp, (131)
S3 S3 S3

and we know

A — p? —2hu > 0. (132)
In the same way, the integration of |M_y|? gives

A — p® + 2k > 0. (133)

Combining these two inequalities restricts the possible range of i as

—VA+R+h<pu< A+ —h (134)

Note that it depends on eigenvalue A. To make Eq. (134) simpler, we introduce the abbreviations ¢ and m as

he =+ A+ h?—h, hm = p, (135)
and the inequality is rewritten as
—<m<H. (136)

Note £ > 0. The conflict between an infinite number of eigenfunctions and the boundedness of m can be eliminated
as follows. Suppose eigenvalue m has the maximum value My, and the minimum value My, and assume that the
corresponding eigenfunctions y,,,, and y,;, satisfy the following equations:

M ymax =0, M- =0. (137)

Ymin

When these equations hold, Eq. (128) and (130) also hold trivially with the identically zero function for the outside
range of Eq. (136), and the contradiction does not occur regardless of the number of My operating times.
For a certain A, substituting y,,.. and pimax = AMmax into inequality (131) yields the following equality:

A—pl. . — 2hpimax = 0. (138)
Using £, mpyax instead of A, pipay, it is rewritten as
(Mmax — € )(Mmax + (£ +2)) = 0. (139)
Similarly for mumin, we obtain
(Manin + £) (Mimin — (£ +2)) = 0. (140)
From these equations, the maximum and minimum of m are determined as
Mmax = £, Mmin = —¥. (141)

A series of M operation on yYmin causes +2 increment for eigenvalue m at each time, and after several operations,
the maximum eigenvalue myax and the corresponding eigenfunction ym.x must be obtained to be bounded above.
Therefore the relation between Mmpyax and My, is written as Mmmax = Mmin + 2k, where &k = 0,1,2,... denotes the
number of times of M operation, and inserting Eq. (141) into the relation yields

(=k=0,1,2,.... (142)

Namely, ¢ is a non-negative integer and m is a two by two stepping integer which lies in —¢ < m < /.
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With the use of £ and m, we label a simultaneous eigenfunction of L? and M as y,,,:
LQyﬁm = h2£(£ + 2)y6m7 My@m = hmyém (143)

The state labeled £ and m+2 can be obtained by M operation on y,,,., but it is not normalized as is. From Eq. (131),
we can see that My, is related with normalized y,,, ,, as

M+y€m = h\/(é - m) (é +m+ 2) yhn—f—Q’ (144)
where the real and positive phase is chosen. Similarly, M_y,,, is related with normalized y,,, o as
M_yg = B/ (C+m)(€ =m0 +2) Yy s (145)

We are ready to solve the original eigenvalue equation (116)
Mu+ M_v = \u,
Miuw— Mv = .

Careful observation of Eq. (146) makes us notice the following solution:

(146)

u=AYp,, V=DBYs, 0 (147)

where A and B are some proper constants. Note that this solution also becomes an eigenstate of L? with eigenvalue
h20(¢ +2). In order to set the values of A, B, insert the solution (147) into Eq. (146), and it follows that

hmA+ B/ (+m+2)({ —m) B = \A,

(148)
/(0 —m)(l+m+2)A—h(m+2)B=\B
or
A\ — hm h\/(£+m+2)(€m)] [A]:O. (149)
—h/(€ —m)(l +m +2) A+ A(m +2) B
For a non-trivial solution, the determinant of the matrix must become zero:
(A=RO(N+HR(L+2)) =0. (150)
Therefore, as expected, we obtain the eigenvalues of L-o as
A=ht, —h(l +2), £=0,1,2,.... (151)
The relation between A and B are given by
B= &7’12 A for A\=H, (152)
_— Tim” A for A= —h(f+2). (153)

The absolute values of A, B are determined from the normalization condition

/Sa[u* v*] m dQ:/SB(|u|2+|v|2) a2 =1, (154)

+m+2 t—m

A\ iy Pe\mes frAs 1)
¢ —m {4+m+2

A— CTEE B=— T for A= —h(£+2), (156)

where real phase is chosen. Taken together, the eigenvalues and eigenfunctions of the operator L-o are

and they become

\ =t |:u] o 1 VE+m+2 Yom (157)
- v 20+ 2 V=m0 Ygpis ’
A= —h(t+2), H v Lom v (158)
v V2042 | —Vl+m+2y,, .,

This is the four-dimensional version of spin spherical harmonics.
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VI. SUMMARY

We have investigated the analog of the spin angular momentum operator in general dimensional space. When the
square of the orbital angular momentum operator was decomposed into the not squared operator L-o, the spinlike
operator o emerged as the coefficient of L. Every property of o was derived from the following identical equation:

L-o(L-o+h(n—2) =L (159)

This is the most important equation in this paper. The conditional equations directly obtained from the above
equation have been somewhat complicated, and we transformed them into the simpler equations in such a way that
relations for lower-dimensional subset were unchanged in higher-dimensional space. Then, by heuristic method, we
found the concrete representation matrices in several low-dimensional spaces with attention to the restriction condition
on the matrix form. Lastly, we solved the eigenvalue problem of L-o in four-dimensional space and obtained the
consistent eigenvalues.

In ordinary three-dimensional quantum mechanics, spin is assumed to be independent of orbital angular momentum.
However, in our derivation of spin, o always accompanies L, and we do not have to deal with the eigenvalues and
eigenvectors of o or spin S = o /2 directly. Spin or o is nothing but a coefficient, and L-o seems to be more
fundamental existence. In a hydrogen-like atom, degenerate states of the electron are usually distinguish by both
the orbital angular momentum quantum number and spin quantum number. However, in our new interpretation,
the states can be distinguished by the orbital angular momentum quantum number i, —hi(¢ + n — 2) only. The not
squared operator L-o enables us to unify spin into orbital angular momentum.

Appendix

In the case of n > 7, examples of o matrices are given. The use of the Pauli matrices and tensor product makes it
easy to find proper representations.

n="178

o12=0,QI1®1I, o13=—0,Q1RX1I, 03=0, 11
014 =03 R0, Q0 024 = 0y Q0 Q 0z, 034 =0,Q0,Q0,
015 = —04 Q 0y ® 0, O35 = —0y ® 0y, 0, O35 = =0, R0y Q0
016 = 0z @04 ® 0, 026 =0y ® 0y ® 0y, 036 =0, Q0 Q0
o5 =1R0, I, o6 =1Q0,®1, o6 =100, 1
o7 =—-0,01®a0,, o7 = =0y @I ® 0y, o3 =—0:@1Q0y
oy =1®0, ®o,, os7 = —1®0y R0y, o7 =1 R0, ® o,
018 =0, QI R0y, 028 =0y @1 ® 0y, 0383 =0, Q1 R0,
o =1®0,®o0,, o8 =—1 @0, @0y, o =1®@0, ®0oy

os=1R1IR®0,



n=29,10

o12=0,1IRI1I1,
014 =0, R0, R0, 0y,
015 = —0; @0y ® 0, 0y,
016 = 0z @ 0y ® 0, Q0
o5 =10, IR I,

o =0, 1Q0y @0,
o7 =1®0.Q0, 1,
018 =0, IR0, R0,
ois=1®0c, 0,1,
o =0, 1QIRQ@0,,
o9 =1Q0,®0, 0y,
0110 =011 ® 0y,
o410 =1 ®0, R0, ® oy,
o =1R1I1®0, 1,
o710 =—-1®1I®0o, @0y,

n=11,12

012=0,RIQIRIRI,

014 =0,80,30, 0,0,
015 =0, R0, R0, R0, R0y,
016 =0 R0, R0, R0, R0,
015 =10, IRIRI,

o1 =0, IR0, ®0, R0,
o =10, R0, 1I®I,
018 =0, IR0, V0, R0,
ois=1®0c.®0y, IR,
o19=—0, IR0, X0,
ouw=1Q®0, R0, R0, ®1I,
0110 =0, RIQRIQ0o, ® o0y,
oa=1R®0,®0, @0y, 1,
o =-0;,IRI®IR0y,
oan=1®0c, R0, V0, Vo,
0112 =0, RIRIR IR oy,
o =1R®0, R0, R0, 0y,
o =1®IR0c,IXI,
or=-11IQ0y, @0y, X1,
on=-I0IQ0c,Q0, R0y,
ore=—I®I®0, R0, oy,
o =1RIRIRQ o, ® oy,

o13=—0,RIRIRI,
024 =0y, Q0, R0, K0,
095 = —0y R0y R0, R0y,
026 =0y Q0 R0, R0y,
o6 =1®0,@I®I,

Oy =0y RIQoy®o,,
osr=—1Q®oy®0o, ®I,
o =0y ®@I®o0, V0,
osg =—1®o, @0y, X1,
029 = =0y @IRI® oy,
059 = —1®oy®0, ® oy,
o210 =0y @I R IR oy,,
os10=—1R®0, R0, oy,
org=—-10I1IR0y R0y,
og10 =1®1I®0, ® oy,

o3=-0,0IRIRIRI,
024 =0y Q0, R0, R0, Qo,,
Oo5 = —0y R0y R0, R0, 0y,
026 =0y Q0,®0, R0, Q0
o =100, 22131,

Oy =—0y IR0, R0, R0,
o1 =10, @0, @I,
08 =0y, RIR0, ®0, R0,
oss=—I@o, @0, @11,
09 =—0,RIRXIRQ0y X0,
o9 =—1®0oy, R0, Qo ® 1,
0210 =0y RIRI®o0, ®o0,,
os0=—I®o,®0, @0, I,
oo =—0,RIRIRIR oy,
osn=-1R0y Q0. R0, ® 0y,
O =0, QIRIXI®oy,,
ose=—1R®0c, R0, R0, R oy,
or9=—-1Q®IQRo, o, ®I,
osw=1®1®0, R0, X1,
osn =I1RIQ0, ®0, ® oy,
ose =1R1I®0, ®0, 0oy,
opre=I10II1I®o, ®d,,

003 =0, RIRIRI
034 =0,Q0,Q0, R0,
035 = —0,Q0,Q0,Q0,
036 =0, R0, R0, R0,
056 =1®0, @IRI
o377 =—0,0IR0y,®0,
o =1R0, ®o, Q1
033 =0, R0, R0,
oes =1 R0, Q0,1
039 =—0,QI®I1I®a0,
oe9 =1l Q0, ®0, R0y
0310=0,RIQVI Q0
o0 =10, ®0, R0y
080 =1RIR0o, Vo,
g1 =1Q1IRIR0,

003 =0,RIQITRI®I
031 =0,QQ0,R0, R0, R0,
035 = =0, R0y R0, R0, R0,
036 =0, Q0, R0,R0, R0,
056 =1®0, @IRI®I
o3r=-0,01I®0,R0, R0,
o7 =1®0, R0, @I®I
033 =0, RIR0, Ro,Ro,
oes =1 R0, ®oy, ®I®I
030 = -0, QIQRIRQRoy, o0,
069 =1®0,R0,Q0, 1
0310=0, IR R0, R0,
o610 =1 ®0, @0, Qoy® 1
osn=-0,Q0IRIRIQ 0,
o1 =1 ®0, ®0,Q0, R0y,
0312 =0, 1IQIRI®0,
o612 =1R0,R0,R0, oy
080 =1RIR0, 0,1
oo =IR1I®I®c, ®1
oon=—-I1RII1®0,R0,
oge=—I1RI®I®o, @0,
e =IIxI®I®a,
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