

LOCALLY-STRUCTURED UNITARY NETWORK

Yasas GODAGE, Eisuke KOBAYASHI and Shogo MURAMATSU

Niigata University, Japan

MSIPLab

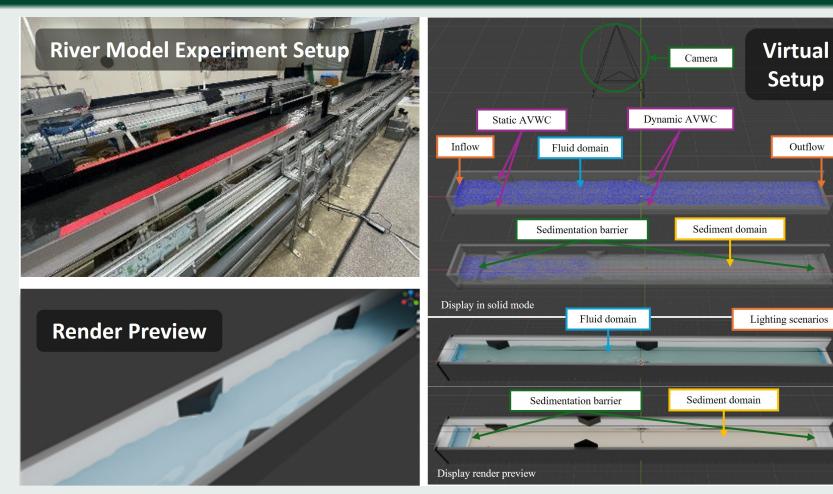
APSIPA ASC 2025, Singapore

ABSTRACT

- Proposed a novel learnable linear transform, **Locally-Structured Unitary Network (LSUN)**, for interpretable and systematic manifold-based dimensionality reduction.
- LSUN employs **locally controllable, shift-variant filter kernels** under a global unitary constraint, trained in a self-supervised manner to capture tangent spaces efficiently.
- Demonstrated superior low-dimensional representation through approximation and dynamical system modeling, suggesting its potential as a **new paradigm for manifold learning**.
- Key words** – *Tangent space sampling, shift variability, unitarity, linear transforms, self-supervised learning*

1 INTRODUCTION

Need for interpretable dimensionality reduction for high-dimensional data (e.g., observation of river-channel dynamics since 2017)



Problems

- High-dimensional data contain rich information → Difficult to analyze due to the “curse of dimensionality”
- Conventional block processing and convolutional dictionary → Unable to directly capture tangent-space structures
- Nonlinear approaches such as autoencoders or sparse coding → Poor interpretability as an operator

Objective

Learnable linear transform that captures tangent spaces of a manifold latent in high-dimensional data

We propose **LSUN** to capture the tangent spaces.

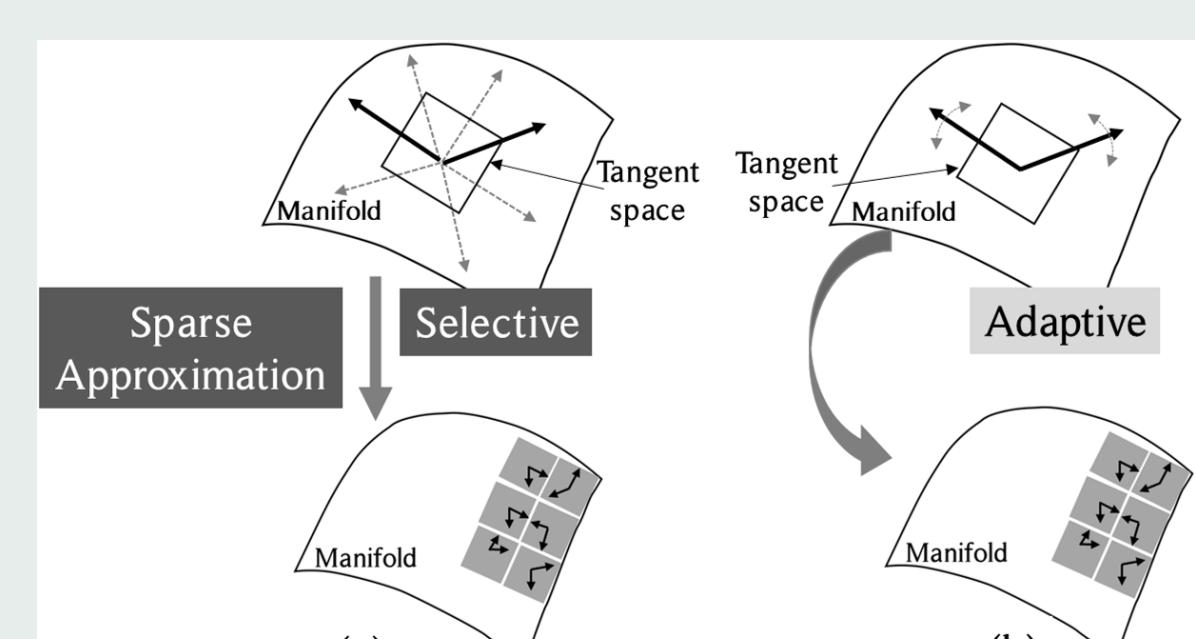


Figure: Two different ways of capturing tangent spaces

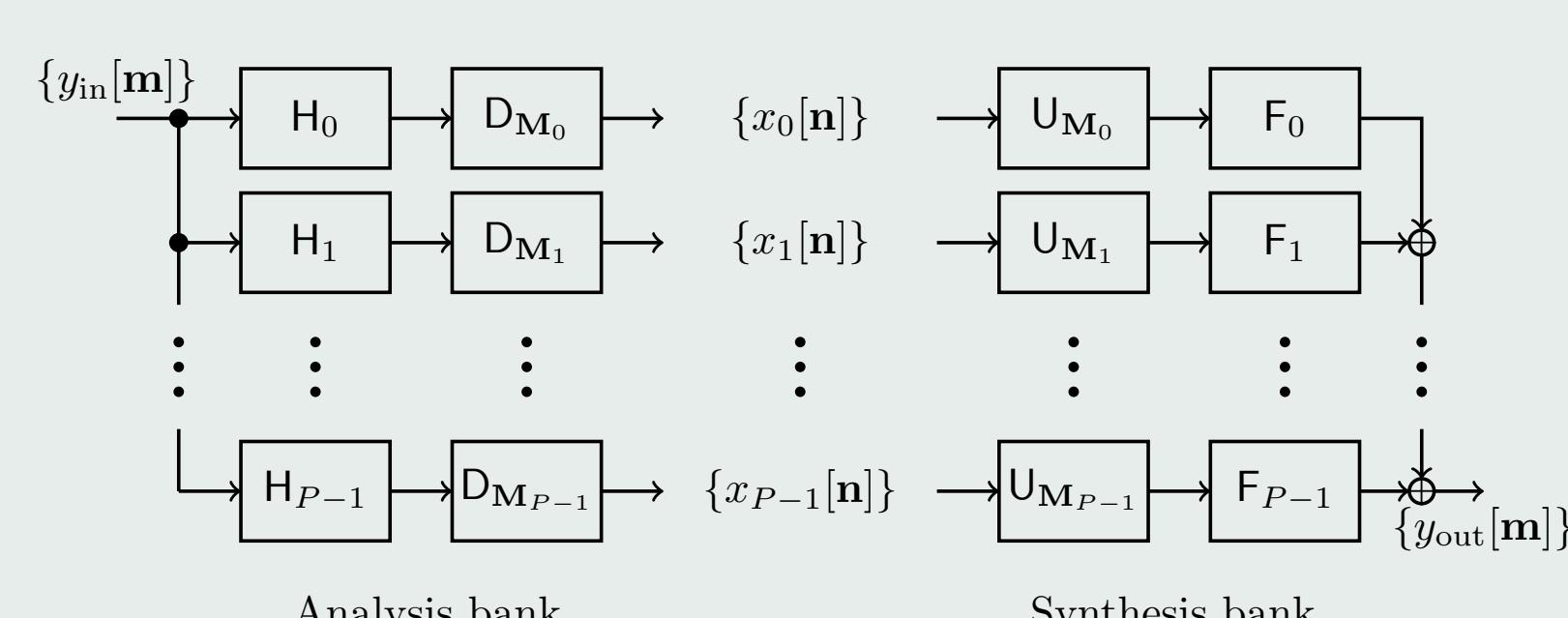


Figure: Parallel Config. of P-Ch. filter banks (FBs) w/ stride

Contributions

- Shift-variability:** Adaptive filter kernels
- Unitarity:** Energy preservation
- Self-supervised learning:** Tunable w/o training data

2 REVIEW OF LINEAR DIMENSIONAL REDUCTION

Table: Comparison of dimensional reduction models.

	Unitary	Overlap	Learnable
Block DCT	✓	✗	✗
Block PCA	✓	✗	✓
CAE	✗	✓	✓
DL-PUFB (CDL)	✓	✓	✓

CAE: Convolutional Autoencoder, DL-PUFB: Dictionary Learning w/ Paraunitary FBs

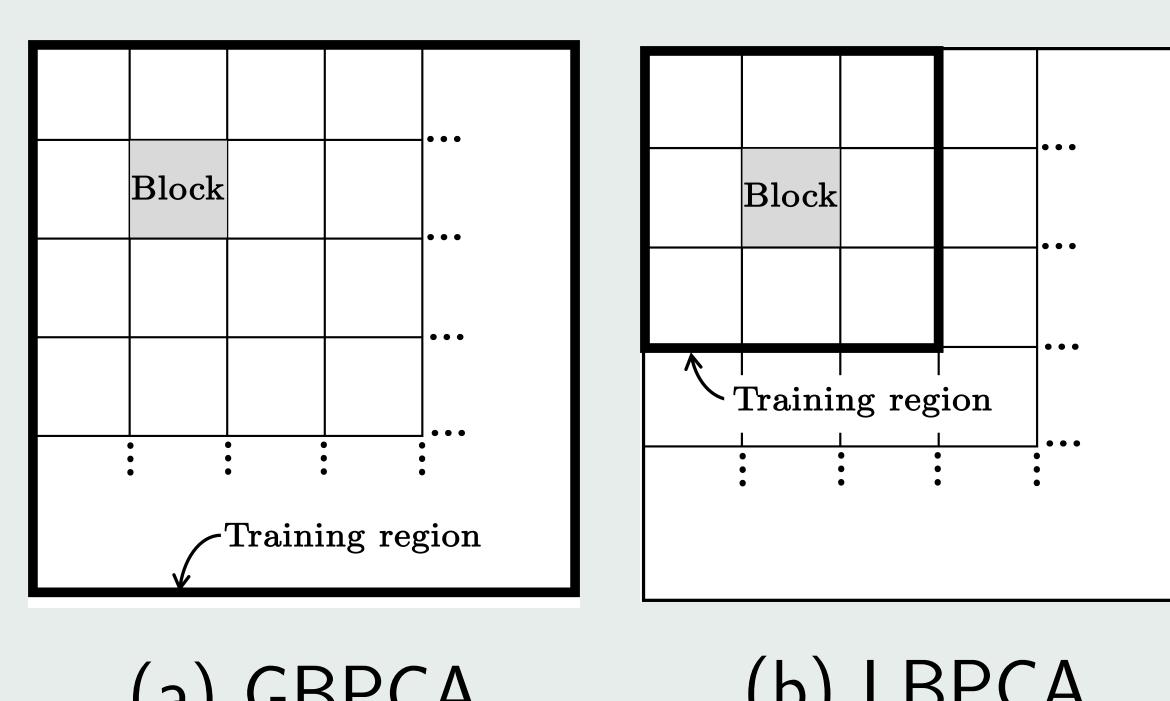


Figure: 2-D illustration of training region.

Global/Local Block PCA (GBPCA/LBPCA): The problem is set as

$$\begin{aligned} \{\hat{\Phi}, \{\hat{\mathbf{x}}_n\}_n\} = \arg \min_{\{\Phi, \{\mathbf{x}_n\}_n\}} \frac{1}{2S} \sum_{n=1}^S \|\mathbf{y}_n - \Phi \mathbf{x}_n\|_2^2, \\ \text{s.t. } \Phi^T \Phi = \Phi \Phi^T = \mathbf{I}_M, \\ \|\mathbf{x}_n\|_0 \leq p, n \in \{1, 2, \dots, S\}, p \in \{1, 2, \dots, M-1\} \end{aligned}$$

to find the unknown synthesis dictionary $\Phi \in \mathbb{R}^{M \times M}$ and features $\{\mathbf{x}_n\}_n \subset \mathbb{R}^M$ for $\{\mathbf{y}_n\}_n$.

- GBPCA: $\mathbf{D} = \mathbf{A}^T = \text{blkdiag}(\Phi, \Phi, \dots, \Phi)$ w/ $\Phi \in \mathbb{R}^{M \times M}$
- LBPCA: $\mathbf{D} = \mathbf{A}^T = \text{blkdiag}(\Phi_1, \Phi_2, \dots, \Phi_B)$ w/ $\Phi_b \in \mathbb{R}^{M \times M}$

Convolutional Dictionary Learning (CDL): Let $\mathbf{D} \in \mathbb{R}^{BM \times BN}$ be a global synthesis convolutional dictionary, $\mathbf{x} \in \mathbb{R}^{BN}$ be a concatenation of coefficient vectors $\{\mathbf{x}_n\}_n$, and $\mathbf{y} \in \mathbb{R}^{BM}$ be a target signal. Then, we have

$$\{\hat{\mathbf{D}}, \hat{\mathbf{x}}\} = \arg \min_{\{\mathbf{D}, \mathbf{x}\}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2^2 \text{ s.t. } \|\mathbf{x}\|_0 \leq BK,$$

where $K \ll M$, i.e., $K \ll N$.

- Block LBPCA and Block K-SVD are special instances of CDL.

3 LOCALLY-STRUCTURED UNITARY NETWORK

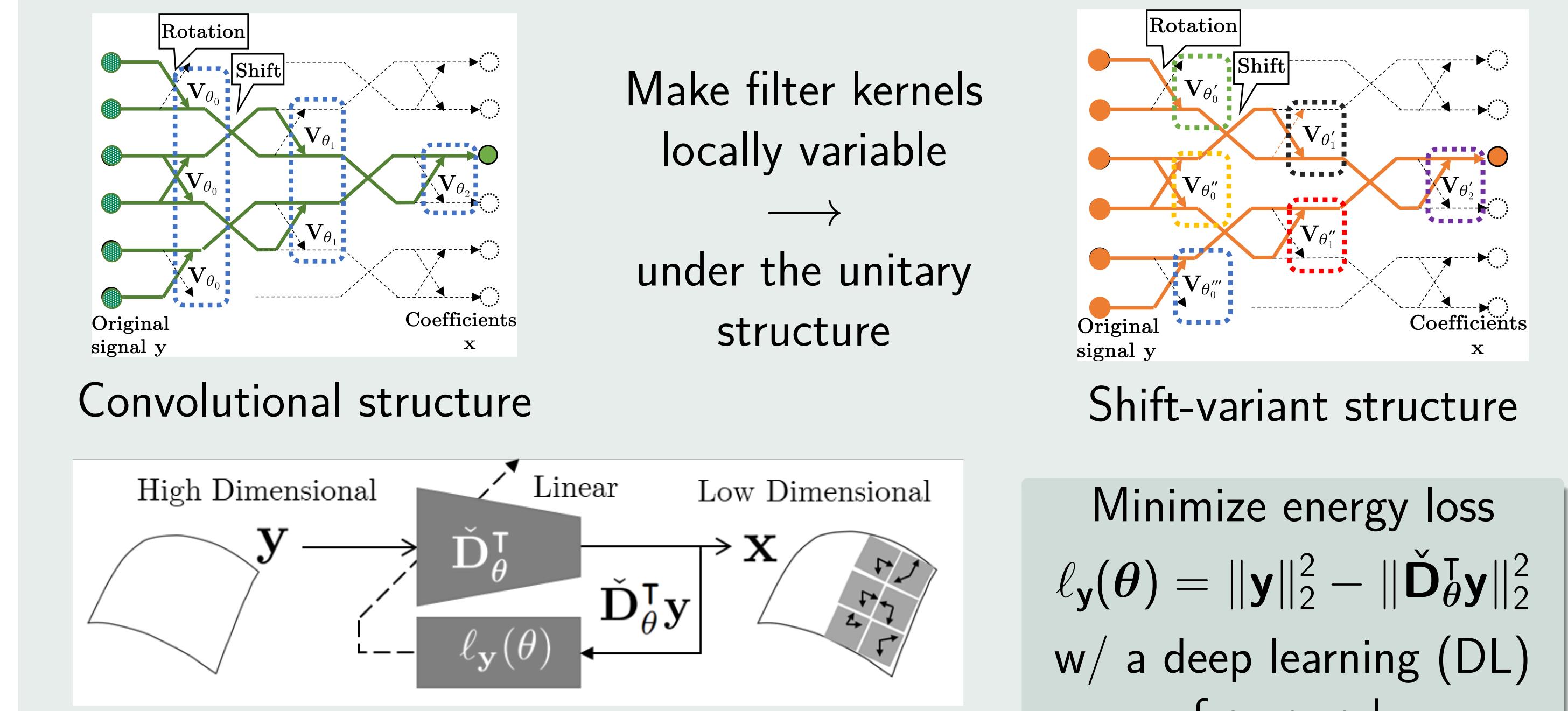


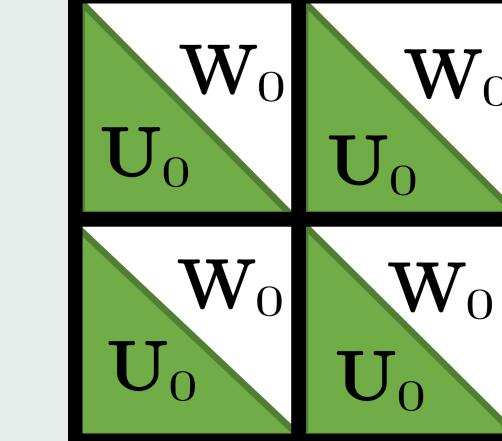
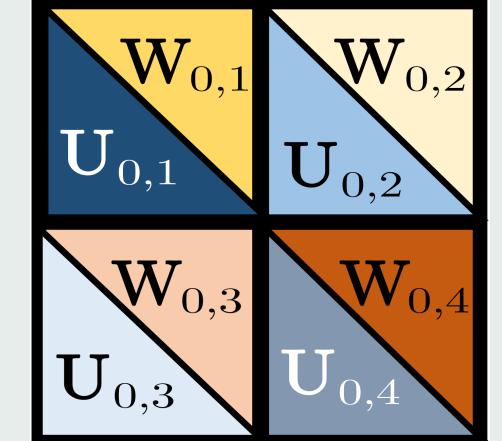
Figure: Example configuration of the learning process.

4 CONSTRUCTION EXAMPLES

Based on convolutional FBs built on cascaded primitive block operations

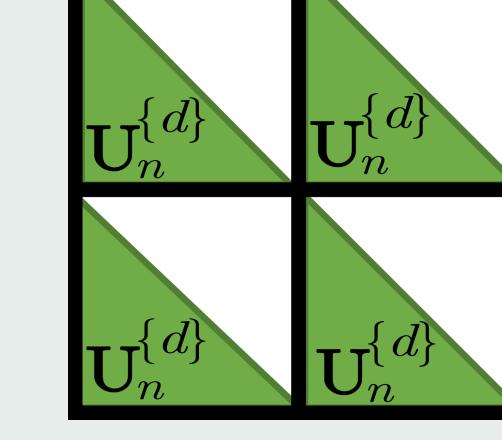
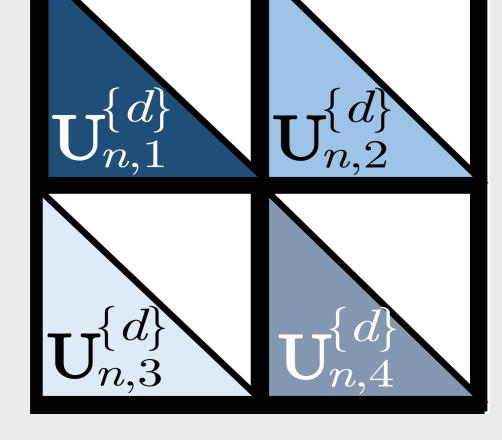
1-D LSUN Example: Gan's 1-D PUFBs

L. Gan and K. K. Ma, “On Simplified Order-One Factorizations of Paraunitary Filterbanks”, IEEE Trans. on Signal Process., March 2004



2-D LSUN Example: Our M-D LPPUFBs

S. Muramatsu, A. Yamada and H. Kiya, “A design method of multidimensional linear-phase paraunitary filter banks with a lattice structure”, IEEE Trans. on Signal Process., March 1999



(a) Shift invariant

(b) Shift variant

Figure: Comparison of unitary parameters

5 PERFORMANCE EVALUATION

Reproducible code → <https://github.com/msiplab/TanSacNet>

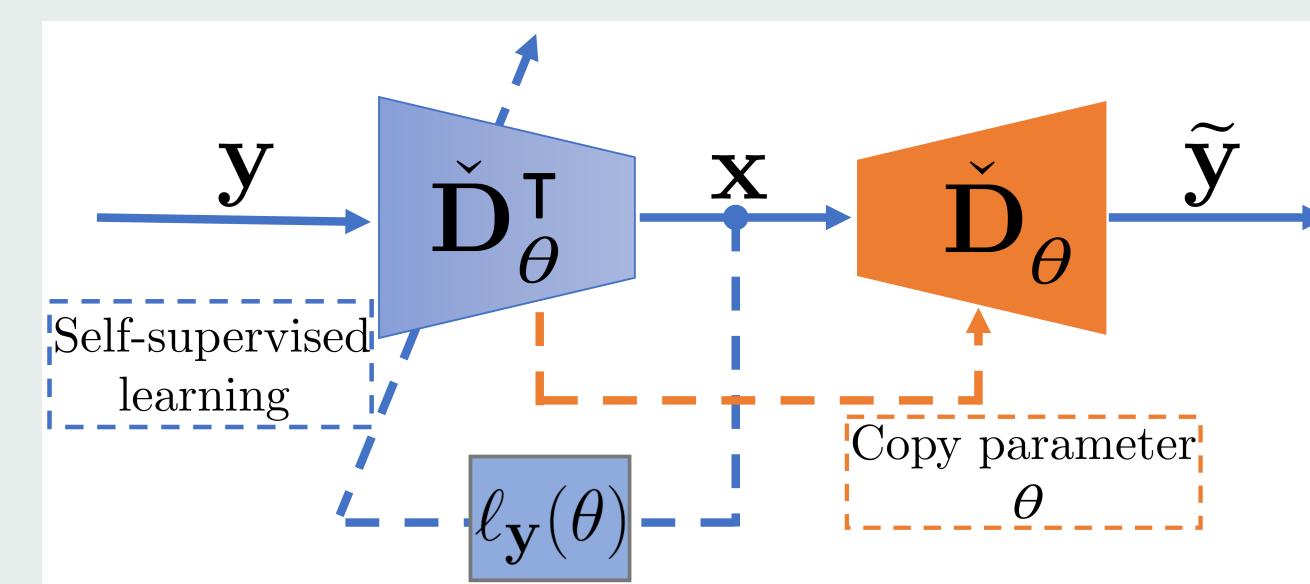


Figure: Example configuration of the learning process.

1-D LSUN Experiment: Function approximation. Please refer to the paper.

2-D LSUN Experiment: Image approximation. Please refer to the paper.

Dimensional Reduction for Dynamic System Modeling: Excerpt from the paper.

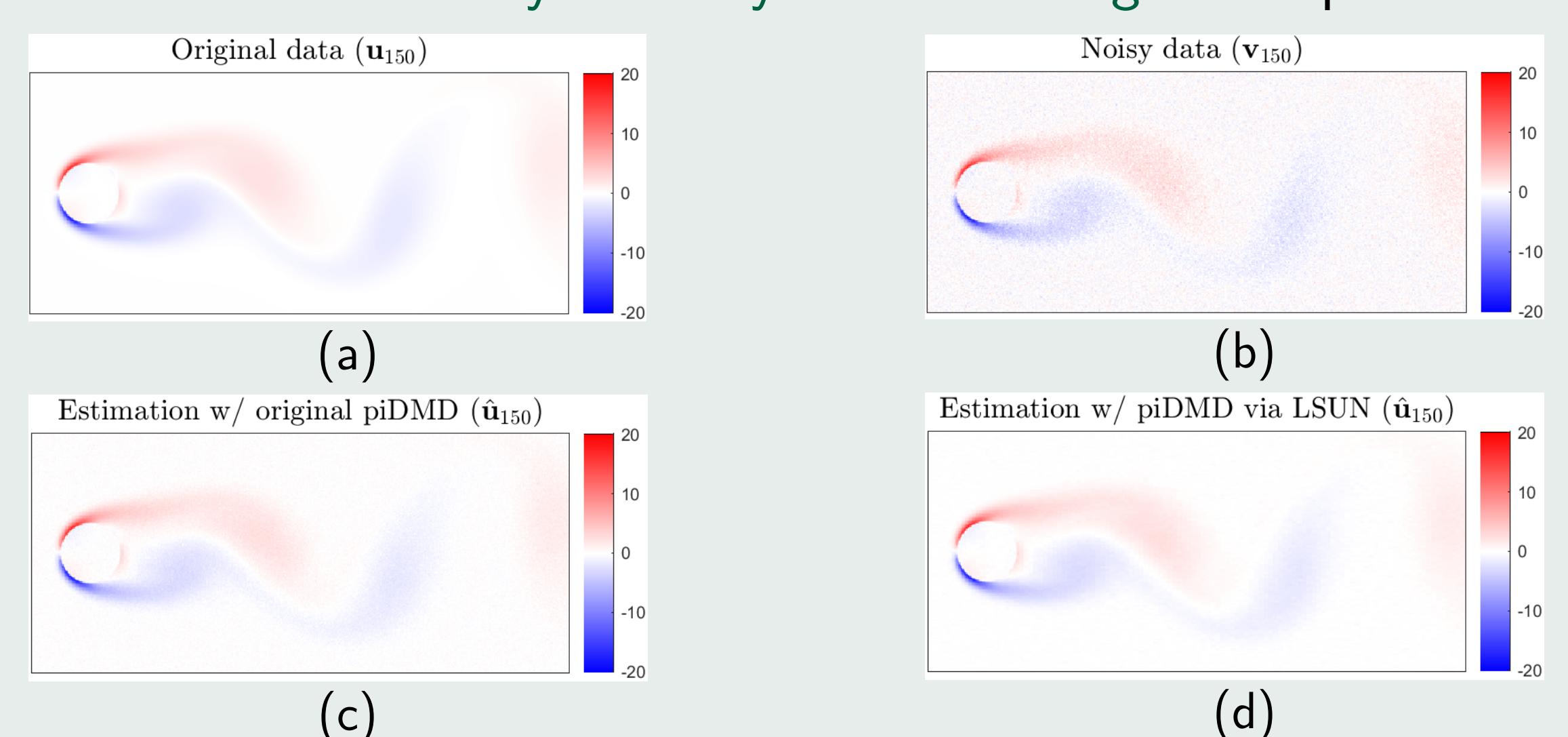
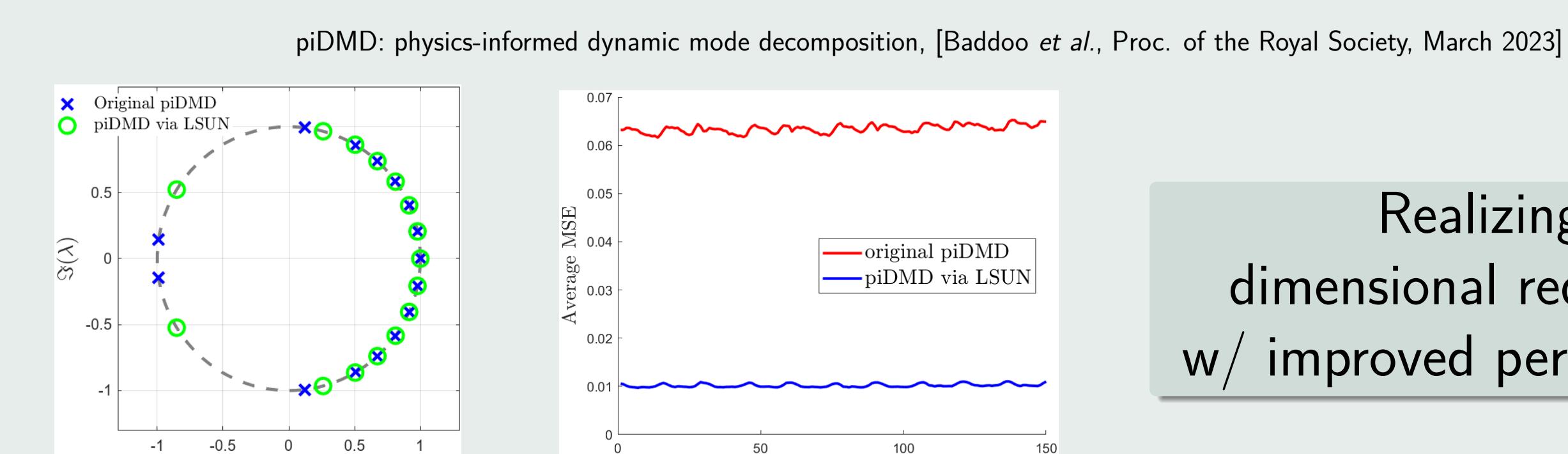


Figure: Flow estimation with noisy data using piDMD w/ and w/o LSUN.



Realizing dimensional reduction w/ improved performance

6 CONCLUSIONS

- Proposed a locally-structured unitary dictionary for tangent space sampling, validated by approximation and dynamical system modeling
- Achieved better low-dimensional representations than existing block-based methods and convolutional dictionary learning methods
- Future work: apply LSUN to nonlinear conservative systems and integrate it into normalizing-flow networks for improved interpretability

Acknowledgment

This work was supported by JSPS KAKENHI (JP22H00512).