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ABSTRACT

@ Proposed a novel learnable linear transform, Locally-Structured Unitary
Network (LSUN), for interpretable and systematic manifold-based
dimensionality reduction.

@ LSUN employs locally controllable, shift-variant filter kernels under
a global unitary constraint, trained in a self-supervised manner to capture
tangent spaces efficiently.

@ Demonstrated superior low-dimensional representation through
approximation and dynamical system modeling, suggesting its potential as
a new paradigm for manifold learning.

o Key words — Tangent space sampling, shift variability, unitarity, linear
transforms, self-supervised learning
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Need for interpretable dimensionality reduction for
high-dimensional data (e.g., observation of
river-channel dynamics since 2017)

Problems
@ High-dimensional data contain rich information

—— Difhicult to analyze due to the “curse of dimensionality”

@ Conventional block processing and convolutional dictionary
— Unable to directly capture tangent-space structures

@ Nonlinear approaches such as autoencoders or sparse coding
—— Poor interpretability as an operator

Objective
Learnable linear transform that captures tangent spaces of a manifold
latent in high-dimensional data

We propose LSUN to capture the tangent spaces.
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Figure: Parallel Config. of P-Ch. filter banks (FBs)
w/ stride

Figure: Two different ways of
capturing tangent spaces

Contributions
» Shift-variability: Adaptive filter kernels

» Unitarity: Energy preservation

» Self-supervised learning: Tunable w/o training data

2 REVIEW OF LINEAR DIMENSIONAL REDUCTION

Table: Comparison of dimensional reduction models. Block
Unitary Overlap Learnable
BlOCk DCT \/ X X Training region
Block PCA v X v o
CAE X \/ \/ Training region
DL-PUFB (CDL) Vv v v (a) GBPCA (b) LBPCA

CAE: Convolutional Autoencoder, DL-PUFB: Dictionary Learning w/ Paraunitary FBs Figure_ 2 D i||ustrati0n Of training region

Global /Local Block PCA (GBPCA/LBPCA): The problem is set as
min

A 1 g 5
1@, Xnfny = arg (o 128 = lyn — ®x,]|5,
st. @' = PP = |,

|xnllo < p,ne{l,2,....,5},pe{l,2,... M -1}

RMXM

to find the unknown synthesis dictionary ® & and features

{xp}, C RM for {y,},.
o GBPCA: D = AT = blkdiag((b’ b ... 7(|)) W/ b c RMxM
o LBPCA: D = AT = blkdiag(®;, @5, - - - , ®g) w/ @}, € RMxM

Convolutional Dictionary Learning (CDL): Let D € R8M*BN he 3 global
synthesis convolutional dictionary, x € R®" be a concatenation of
coefficient vectors {x,}, and y € R™ be a target signal. Then, we have

n 1
(B.&} = arg pyin _ly — Dx[B st [1x]o < BK.
where K < M, ie., K < N.

@ Block LBPCA and Block K-SVD are special instances of CDL.
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3 LOCALLY-STRUCTURED UNITARY NETWORK
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Figure: Example configuration of the learning process.

4  CONSTRUCTION EXAMPLES

Based on convolutional FBs built on cascaded primitive block operations

1-D LSUN Example: Gan's 1-D PUFBs
L. Gan and K. K. Ma, “On Simplified
Order-One Factorizations of Paraunitary
Filterbanks”, IEEE Trans. on Signal
Process., March 2004

2-D LSUN Example: Our M-D LPPUFBs
S. Muramatsu, A. Yamada and H. Kiya, “A

design method of multidimensional

inear-phase paraunitary filter banks with a

(a) Shift invariant ~ (b) Shift variant

Figure: Comparison of unitary parameters

attice structure”, IEEE Trans. on Signal
Process., March 1999

5 PERFORMANCE EVALUATION
Reproducible code — https://github.com/msiplab/TanSacNet
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Figure: Example configuration of the learning process.
1-D LSUN Experiment: Function approximation. Please refer to the paper.
2-D LSUN Experiment: Image approximation. Please refer to the paper.
Dimensional Reduction for Dynamic System Modeling: Excerpt from the paper.
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Figure: Flow estimation with noisy data using piDMD w/ and w/o LSUN.

piDMD: physics-informed dynamic mode decomposition, [Baddoo et al., Proc. of the Royal Society, March 2023|
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6 CONCLUSIONS

@ Proposed a locally-structured unitary dictionary for tangent space
sampling, validated by approximation and dynamical system modeling

@ Achieved better low-dimensional representations than existing block-based
methods and convolutional dictionary learning methods

@ Future work: apply LSUN to nonlinear conservative systems and integrate
it into normalizing-flow networks for improved interpretability
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