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ABSTRACT

Proposed a novel learnable linear transform, Locally-Structured Unitary
Network (LSUN), for interpretable and systematic manifold-based
dimensionality reduction.
LSUN employs locally controllable, shift-variant filter kernels under
a global unitary constraint, trained in a self-supervised manner to capture
tangent spaces efficiently.
Demonstrated superior low-dimensional representation through
approximation and dynamical system modeling, suggesting its potential as
a new paradigm for manifold learning.
Key words – Tangent space sampling, shift variability, unitarity, linear
transforms, self-supervised learning

1 INTRODUCTION

Need for interpretable dimensionality reduction for
high-dimensional data (e.g., observation of
river-channel dynamics since 2017)

Problems
High-dimensional data contain rich information
−→ Difficult to analyze due to the “curse of dimensionality”
Conventional block processing and convolutional dictionary
−→ Unable to directly capture tangent-space structures
Nonlinear approaches such as autoencoders or sparse coding
−→ Poor interpretability as an operator

Objective
Learnable linear transform that captures tangent spaces of a manifold

latent in high-dimensional data
We propose LSUN to capture the tangent spaces.

Figure: Two different ways of
capturing tangent spaces
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Figure: Parallel Config. of P-Ch. filter banks (FBs)
w/ stride

Contributions
▶ Shift-variability: Adaptive filter kernels
▶ Unitarity: Energy preservation
▶ Self-supervised learning: Tunable w/o training data

2 REVIEW OF LINEAR DIMENSIONAL REDUCTION

Table: Comparison of dimensional reduction models.
Unitary Overlap Learnable

Block DCT ✓ 7 7

Block PCA ✓ 7 ✓
CAE 7 ✓ ✓
DL-PUFB (CDL) ✓ ✓ ✓

CAE: Convolutional Autoencoder, DL-PUFB: Dictionary Learning w/ Paraunitary FBs
(a) GBPCA (b) LBPCA

Figure: 2-D illustration of training region.

Global/Local Block PCA (GBPCA/LBPCA): The problem is set as

{Φ̂, {x̂n}n} = arg min
{Φ,{xn}n}

1
2S

S∑
n=1

∥yn − Φxn∥2
2,

s.t. Φ⊺Φ = ΦΦ⊺ = IM,

∥xn∥0 ≤ p, n ∈ {1, 2, . . . , S}, p ∈ {1, 2, . . . , M − 1}
to find the unknown synthesis dictionary Φ ∈ RM×M and features
{xn}n ⊂ RM for {yn}n.

GBPCA: D = A⊺ = blkdiag(Φ, Φ, · · · , Φ) w/ Φ ∈ RM×M

LBPCA: D = A⊺ = blkdiag(Φ1, Φ2, · · · , ΦB) w/ Φb ∈ RM×M

Convolutional Dictionary Learning (CDL): Let D ∈ RBM×BN be a global
synthesis convolutional dictionary, x ∈ RBN be a concatenation of
coefficient vectors {xn}n, and y ∈ RBM be a target signal. Then, we have

{D̂, x̂} = arg min
{D,x}

1
2∥y − Dx∥2

2 s.t. ∥x∥0 ≤ BK ,

where K ≪ M , i.e., K ≪ N .
Block LBPCA and Block K-SVD are special instances of CDL.

3 LOCALLY-STRUCTURED UNITARY NETWORK

Convolutional structure

Make filter kernels
locally variable

−→
under the unitary

structure
Shift-variant structure

Figure: Example configuration of the learning process.

Minimize energy loss
ℓy(θ) = ∥y∥2

2 − ∥Ď⊺
θy∥2

2

w/ a deep learning (DL)
framework

4 CONSTRUCTION EXAMPLES
Based on convolutional FBs built on cascaded primitive block operations

1-D LSUN Example: Gan’s 1-D PUFBs
L. Gan and K. K. Ma, “On Simplified
Order-One Factorizations of Paraunitary
Filterbanks”, IEEE Trans. on Signal
Process., March 2004

2-D LSUN Example: Our M-D LPPUFBs
S. Muramatsu, A. Yamada and H. Kiya, “A
design method of multidimensional
linear-phase paraunitary filter banks with a
lattice structure”, IEEE Trans. on Signal
Process., March 1999

(a) Shift invariant (b) Shift variant
Figure: Comparison of unitary parameters

5 PERFORMANCE EVALUATION
Reproducible code → https://github.com/msiplab/TanSacNet

Figure: Example configuration of the learning process.
1-D LSUN Experiment: Function approximation. Please refer to the paper.
2-D LSUN Experiment: Image approximation. Please refer to the paper.
Dimensional Reduction for Dynamic System Modeling: Excerpt from the paper.
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Figure: Flow estimation with noisy data using piDMD w/ and w/o LSUN.

piDMD: physics-informed dynamic mode decomposition, [Baddoo et al., Proc. of the Royal Society, March 2023]

Realizing
dimensional reduction

w/ improved performance

6 CONCLUSIONS
Proposed a locally-structured unitary dictionary for tangent space
sampling, validated by approximation and dynamical system modeling
Achieved better low-dimensional representations than existing block-based
methods and convolutional dictionary learning methods
Future work: apply LSUN to nonlinear conservative systems and integrate
it into normalizing-flow networks for improved interpretability
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