
6.1 金属材料の強化機構

- ・問い:鉄鋼材料を熱処理(例:焼入れ)することにより
 - ◎ヤング率は変化するか?
 - ◎降伏応力は変化するか?

・弾性特性(ヤング率, せん断弾性係数, ポアソン比, etc...)

 \rightarrow

 \rightarrow

・塑性特性(降伏応力, 耐力, 引張強さ, etc...)

 \rightarrow

•材料の強度:	
•塑性変形:	
・微細組織の制御:	
1	
2	
•	
<u>.2 加工強化(硬化)とベイリ·</u> ●「加工」とは?:	<u>ー•ハーシュの関係</u>
•材料加工:	
→ 除去加工:	
→ 非除去加工	
・材料加工により塑性変形進行 →	
•加工前:	-加工後:

●加工強化 (硬化) の基本的メカニズム:

●単結晶のせん断変形応力と転位密度の関係:

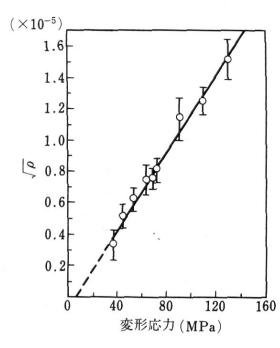


図 6.1 転位密度と変形応力の関係

例題:単位体積中の銅(せん断弾性係数 G = 45.0 GPa, バーガースベクトル b = 0.256 nm) において転位密度 $\rho = 7.8 \times 10^{13}$ m⁻²であった。この時のせん断変形応力 τ を求めよ。ここで材料定数 $\alpha = 0.50$ とする。

6.3 すべり系

● 転位の運動:

・問い:転位の運動の方向も特定の方向=「すべり方向」でのみ生じる. すべり方向はどのような特徴を持っているか?

● すべり系:

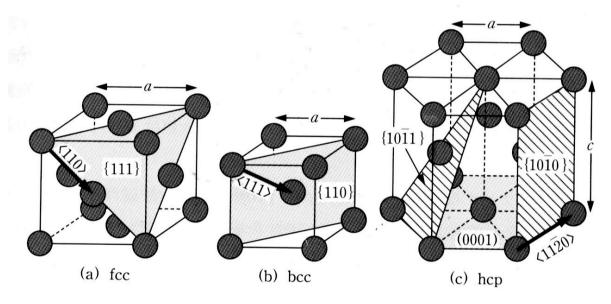


図 6.2 各結晶構造のすべり系の例

表 6.1 各結晶構造のすべり系

Structure	Materials(Example)	Slip Plane	Slip Direction	Number of Slip Sysytem
ВСС	a-Fe,W,Mo	{011} {112} {123}	<111\overline{111\overline{1}>} <111\overline{1}>	6 × 2=12 12 × 1=12 24 × 1=24
FCC	Al,Cu,g-Fe	{111}	<110>	4 × 3=12
НСР	Cd,Mg Ti,Be,Mg Ti,Be	(0001) {10 <u>1</u> 0} {10 <u>1</u> 1}	<1120> <1120> <1120>	1 × 3=3 3 × 1=3 6 × 1=6