4.1 材料の理想変形強度

●理想変形強度:

・結晶中の特定の面において、その上下の原子面が一斉にずれる場合を考える

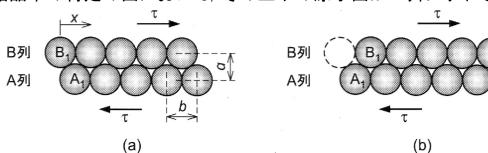


図 4.1 完全結晶における 原子列のすべり

・原子の移動にはポテンシャルエネルギ P の変動を伴う.

P =

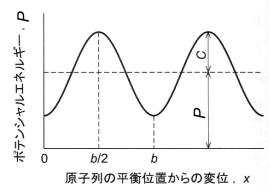
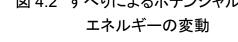



図 4.2 すべりによるポテンシャル

 $au_{
m max} =$

表 4.1	各種単結晶材料の臨界せん	
	応力の理論値と実験値	

材料	理論値	実測値	理論値
471 作者 	[GPa]	[MPa]	実測値
Mg	2.9	0.81	3600
Ag	4.4	0.59	7500
Au	4.4	0.90	4900
Zn	4.7	0.92	5100
Cu	6.3	0.98	6400
Ni	11.0	5.7	1900
Fe	12.9	27.5	470

・問い:なぜこのような差が生じるのか(なぜ実測値はこれほど低いのか)?

4.2 金属の結晶構造

- ●結晶とは?:
- •単位格子:
- •格子定数:

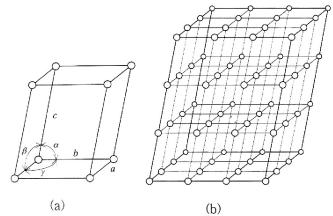


図 4.3 単位格子および結晶格子

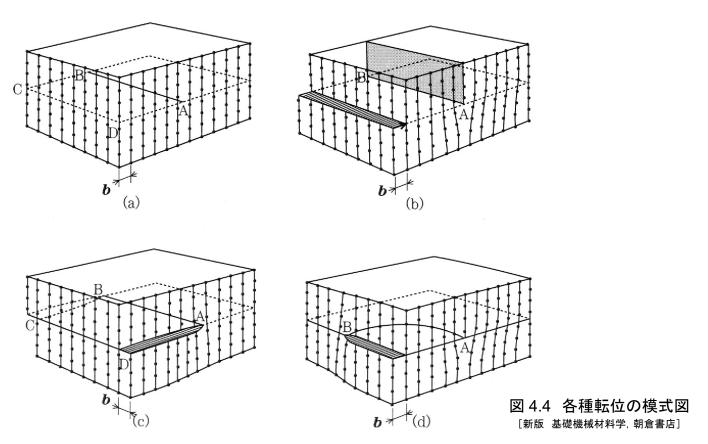

[新版 基礎機械材料学, 朝倉書店]

表 4.2 代表的な金属結晶構造

		6 至河州 旧	
構造名	体心立方 構造	面心立方 構造	最密六方 構造
略称	bcc	fcc	hcp
配位数	8	12	12
最近接 原子間距離	$\frac{\sqrt{3}}{2}a$	$\frac{\sqrt{2}}{2}a$	2
原子半径	$\frac{\sqrt{3}}{4}a$	$\frac{\sqrt{2}}{4}a$	$\frac{a}{2}$
格子内の 正味原子数	2	4	6
原子充填率	68%	74%	74%
代表的な 元素	Fe, Cr, W	Al, Cu, Au	Mg, Ti, Co
模式図			
			a

	•最近接原子:			
	•最近接原子間距離:			
	•原子半径:			
	■配位数:			
	▪最密方向∶			
	・原子充てん率:			
Г				
	•例題:bcc 構造における原子充てん率(=68%)を算出せよ.			
-				
4.3 格子欠陥				
•格子欠陥 —— 点欠陥:				

4.4 転位とは:

●上図(a) [完全結晶] 中の面 ABCD に着目→面 ABCD における上下の原子結合を切断したと仮定

→ D→A 方向に力をかけ,面 ABCD より上部の原子全てを 1 個分ずらしたと仮定 した状態:

▶ D→C 方向に力をかけ、面 ABCD より上部の原子全てを 1 個分ずらしたと仮定した状態: