基礎数理 AI 第 8 回目

永幡幸生
新潟大学工学部

7月10日
微分の応用と凸関数

\[\lim_{x \to a} \frac{f(x)}{g(x)} \] の求め方の一つ

定理 18,19 （ロピタルの定理）

\[f(a) = g(a) = 0 \]
\[\Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \]
同様に
\[\lim_{x \to a} f(x) = \pm \infty, \quad \lim_{x \to a} g(x) = \pm \infty \]
\[\Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \]
微分の応用と凸関数

例

\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{(x)'} = \lim_{x \to 0} \frac{\cos x}{1} = 1 \]
（実際は話が逆転していることに注意）

\[\lim_{x \to +0} x \log x = \lim_{x \to +0} \frac{\log x}{1/x} = \lim_{x \to +0} \frac{1}{x} = \lim_{x \to +0} (-x) = 0 \]
必要ならば何回か適用する。

\[\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} = \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2} \]
微分の応用と凸関数

定義 （凸関数）

\[f(x) \text{ が下に凸} \]

\[a < b < c \Rightarrow f(b) \leq \frac{c - b}{c - a} f(a) + \frac{b - a}{c - a} f(c) \]

命題 （凸不等式）

\[f(x) \text{ が下に凸} \]

\[\forall n \geq 2, \forall \{x_i\}_{i=1}^{n}, \forall \{\alpha_i\}_{i=1}^{n}, \alpha_i > 0, \sum_{i=1}^{n} \alpha_i = 1 \]

\[\Rightarrow f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \leq \sum_{i=1}^{n} \alpha_i f(x_i) \]
微分の応用と凸関数

この凸不等式の応用として相加相乗平均の不等式を導く

\[f(x) = -\log x \] すると \(f'(x) = -\frac{1}{x}, \quad f''(x) = \frac{1}{x^2} \) なので \(f(x) \)

は下に凸

\(\alpha_i = \frac{1}{n} (\forall 1 \leq i \leq n) \) すると命題の仮定に適応するので、

\((f(x) = -\log x \) の条件として) \(x_i > 0 \) として

\[
f\left(\sum_{i=1}^{n} \frac{1}{n} x_i \right) \leq \frac{1}{n} \sum_{i=1}^{n} f(x_i) \] になるが \(\log x \) の性質から

左辺 は

\[
= -\log \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)
\]

右辺 は

\[
= -\frac{1}{n} \sum_{i=1}^{n} \log x_i = -\log(x_1, x_2, \cdots, x_n)
= -\log \sqrt[n]{x_1, x_2, \cdots, x_n}
\]

これより相加相乗平均の不等式

\[
\frac{1}{n} \sum_{i=1}^{n} x_i \geq \sqrt[n]{x_1, x_2, \cdots, x_n}
\]
問題

\[
\lim_{x \to 0} \frac{e^x}{\cos x - (1 - \frac{1}{2} x^2)}
\]
を計算せよ

問題

\[
\{ x_k \}_{k=1}^n x_k > 0 \ (\forall 1 \leq k \leq n) \ とす る。\alpha \geq 2 \ とし て
\]
\[
\sum_{k=1}^{n} x_k^\alpha \geq n^{1-\alpha}
\]
\[
(\sum_{k=1}^{n} x_k)^\alpha
\]
を示せ