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Markov processes

Applications of theorems.

Applying the Proposition (limit of transition matrix), which is
implied by Perron-Frobenius theorem, we have followings; Suppose
that P is a irreducible transition matrix with period 1, then we have

1
lim P"=1] :
n—oo

I

and > 0 is a unique stationary distribution. Hence dng s.t.
Vn > ng, then P, > px/2 > 0. This estimate implies

X, X
D PXa=xIXo=x)=> P, =00
n n
namely Vx is recurrent.
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Though an irreducible transition matrix P has period d > 2, we
can decompose P into d positive block matrices, namely dn s.t.

P1
P>

Py

where P; > 0 for all i. Similarly, we have
3 Pt = ¥ = ) = 3P 2 YA o
m m k

and Vx is recurrent.

NAGAHATA On Markov processes



Markov processes

On recurrent and transient

If we consider recurrent or transient for some finite state Markov
process, then we have no interesting result. If we consider some
infinite state Markov process, then we have some interesting
resuts. For example, if we consider mean 0 random walk on Z¢,
then we have it is recurrent if d = 1,2 and transient d > 3.
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We are interested in a mean return time.

One of the interesting example is random knight problem a follows;
Chess is one of a popular game. We play chess on 8 x 8
chessboard. Knight is a piece of a chess such that we can move it
from black circle to white circle.

(¢] (¢]

o (¢]

When a knight drank and move randomly, can we compute a mean
return time E[T«|Xo = x] ? Here the knight only move from black
circle to white circle with equal probability.
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It seems hard to compute E[T«|Xo = x] by means of
P(Tx = k|Xo = x). But as a result, we know the results as

168 | 112 | 84 | 84
112 | 84 | 56 | 56
84 | 56 |42 |42
84 | 56 |42 | 42

where we only write the mean return time only upper left part, due
to symmetry.
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Similarly
king
140 | 84 84 84
84 | 105/2 | 105/2 | 105/2
84 | 105/2 | 105/2 | 105/2
84 | 105/2 | 105/2 | 105/2
queen
o o 208/3 | 208/3 208/3 208/3
olo 208/3 | 1456/23 | 1456/23 | 1456/23
olo|e 208/3 | 1456/23 | 1456/25 | 1456/25
o|o 208/3 | 1456/23 | 1456/25 | 1456/27
O (]
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For (each) fixed x, we define
oo
,uy:,u;:ZP(Xn:y, Ty > n|Xo = x)
n=0

Note that:
(1) If x A y, then puy, = 0.
(2) If X, = x, then T, < n. This implies for n > 1, we have
P(Xn = x, Tx > n|Xp = x) = 0. Hence we have
px = P(Xo=x,Tx >0[Xo=x) =1

(3) Suppose that x is recurrent. If x — y, then it is also y — x.
Hence p is positive if x <> y.
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Theorem (stationary measure)

Suppose that x is recurrent. Then this y is a stationary measure.

Proof
Suppose that y # x. By using Markov property, we have

P(Xn+1 =2, Xna =y, Tx > n|Xp = x)

=P(Xpnt1 =2, Xn =y, Xn-1 # X, ..., X1 # x| Xo = x)

= P(Xpt1 =z|Xn =y)P(Xn =y, Xo—1 # %, ..., X1 # x| Xo = X)
=Py P(Xn =y, Tx > n|Xo = x)

We also have

P(Xpn=x,Tx >nXo=x)=0
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Taking summation over all y, we have

> P(Xnp1=2,Xa=y, Ty > n|Xo = x)
YF#X

=> Py zP(Xa =y, T > n|Xo = x)
y

Left hand side is equal to

P(Xnt1 =2, T« >n+1|Xo =x), ifz#x
P(Te=n+1Xo=x), ifz=x

NAGAHATA On Markov processes



Markov processes

We note that P(Xp = z|Xp = x) = 0 if z # x. Taking summation
over n, for both side. The sum of left hand side for z # x is

> P(Xnt1=2,Te>n+1X =x)
n=0

o
:ZP(X,,:Z, T« > n|Xo = x) = pz
=0
and that for z = x is

ZP(TX:n+1|XO:X):P(Tx<OO|X0:X):]-ZMX
n=0

since x is recurrent.

NAGAHATA On Markov processes



Markov processes

By changing the order of the summation, the sum of right hand
side (which does not depend on z) is

iZ'D%Z’D(X =y, Tx > n|Xp = x)

n=0 y
—ZZP n—Y7T>n|X0—X yz—z:uy v,z
y n=0
Hence we conclude that u = uP. O
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Theorem (uniqueness)

If P is an irreducible and recurrent, then stationary measure is

unique up to multiple constant. Furthermore, stationary measure is
positive for all x.

Note that in this theorem, we assumed the irreducible. Hence if
there is x such that x is recurrent, then all y is also recurrent.

NAGAHATA On Markov processes



Markov processes

Note: We consider an one dimensional random walk. A stationary
measure p satisfies

Px = qpix+1 + ppix—1, for all x

We can solve this system of linear equations, the basis of the
solutions are given by

X
p .
py=1 p2=x, ifp=gq

Combining these two basis, if p # g, we take v = cyu! + cop® for
c1, ¢ >0, (c1, ) # 0, then they are stationary measures for the
random walk. If p = g then only v = cl,ul for ¢ > 0 are
stationary measures. In fact, in this setting random walk is
recurrent iff p = q.
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Proof
We fixed x and made p = p*. We have proved that this y is
stationary measure. Furthermore, by using irreducible, we have
{n; P(Xp, = y|Xo = x) > 0} # 0. Hence we set

n=n, = min{n; P(X, = y|Xo = x) > 0},
Then we have
0<P(Xy=y|Xo=x)=P(Xa=y, Tx>nXo=x) < p,

namely, this stationary measure is positive for all y.
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We show that if 7 is a stationary measure, then we have Ja € S,
C>0st 0= Cu?
By using the argument of the proof of this claim, if we apply this
claim for 7 = p¥, then we can take a = x. Hence we conclude that
all stationary measure is the same up to multiple constant.
Since there is at least one a € S such that 7, > 0, we normalize ©
as .

Ux

Uy = ==

Va

It is obvious that this v is also stationary measure. We show that
a

v =p
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Since v is a stationary measure, it satisfies vP = v. We regard a
as a special point. Then we can rewrite

v, = E v, P, ,
y

= VP, + Z vy Py,
y#a

Since v; = 1, we have
Vz > Pa,z

Substituting this inequality into above identity, we have
v, 2> Pa,z+ZPa,yPy,z
y#a
Pa,z + P(X2 = Z,Xl 75 a]Xo = a)
= P, +P(Xo=2T,>1X = a)
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Similarly substituting this inequality into the above identity, we
have

vz = Paz+ Y PayPyo+ > P PXo=y, T,> 11X = a)
y#a y#a

= P,,+ P(Xo=2X1 # a|lXo=a)
+P(Xz=2z,Xa#a, T,>1|Xo=a)
P,.+ P(Xo =2z, T, > 1|Xp = a)
+ P(X3=2,T,>2|Xy = a)

Inductively, we conclude that

N
v:>Paz+ Y P(Xa=2T,>n-1X=a), VN

n=2
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If z 2 a, then we have

N
VZZZP(X,,:Z,T3>n|X0:3)—>,U;, (N_>OO)
n=0

If z= a, then since v, = 1 = 1. Hence we have
v, > pg, Vz

Since v is a stationary measure, we have
_ _ n apn __ ,a __
1—Va—E VyPy7aZ§ NyPy,a_Na_l
y y

for all n > 0.

This inequality implies that if P}, > 0 then v, = u3. Since we
assumed that P is irreducible, for any y there is n such that

Py , > 0. Hence we conclude that v = % 0
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Theorem (stationary distribution and mean return time)

Suppose that P is an irreducible matrix with stationary distribution
7. Then all x is recurrent and it satisfies

- 1 - 1
T ETIX =X =
[TXo = S P(Ts > nlXo = x)
n=0

Tx

Note that if a stationary measure y satisfiew ) i, < 0o. Then

by normalizing u as
Hx

we have stationary distribution 7.
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Proof
The second identity is implied by following general result;

Problem
Show that if Y is a nonnegative integer valued random variable,
then we have

E[Y] = i P(Y > n).
n=0

(Here we allow oo = c0.)
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On recurrent
Since 7 is a stationary distribution, there is at least one x € S such
that m, > 0. Furthermore, we have

m, = (7P"), = Zﬂ'y =z|Xo = y) > mP(Xn = z| Xp = x)
Since P is irreducible, for each z, there is n such that
P(X, = z|Xo = x) > 0. Hence we conclude that 7 > 0.

: . . o _ n
Slnc-e mis a sta.tlonary distribution, we have m, =} 7, P .
Taking summation over n, we have

00 = ZWZ—ZZWy :ZWYZ[:)F)”’Z
y n=

n=0 y
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We decompose the probability P}, = P(X, = z|Xp = y) into that
for the first hitting time of the Markov process to z. Then we have

Pl,=PXa=2Xo=y)= Z P(Xn=2,T,=klXog=y)

k=1
=> PXa=2Xc=2T.=k[Xo=y)
k=1
n
=3 P(Xa=2z[Xc =2)P(T: = k|Xo = y)
k=1

n
=) PLAP(T, = kX =)
k=1
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By changing the order of the summation, we have

Z P, = Z PISKP(T, = k|Xo = y)
n=0 n=0 k=1
=> PL.Y P(T.=klXo=y)

/=0 k=1

:ZPAZP(TZ < OO‘XO :.y) < Z'D;,z
1=0 1=0

Since 7 is a stationary distribution, we have ° m, = 1. Hence we
have

(o) o0 o0
co=) my P.<Y my Pi.<) P,
y n=0 y 1=0 1=0

This inequality implies that z is recurrent.
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Finally, we show that

1

o
> P(Ti > n|Xo = x)
n=0

Tx —

The Theorem (uniqueness) implies that ©* defined for each x,
which is

[e.9]
y = Z P(X, =y, T« > n|Xo = x),

n=0
is the same as 7 up to multiple constant. Hence we normalize this
and obtain )
= W, x.
oy My
y Py
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Since we havey = 1, by changing the order of summation, we
have

(o]
ZM;:ZZP(Xn:%Tx>n‘Xo:X)
y

y n=0

=Y ) P(Xa=y, T > n[Xo = x)

n=0 y

o0
=> P(T:>n|Xo = x)
n=0

Hence we conclude that
1

> P(Ti > n|Xo = x)
n=0

Tx =
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This Theorem (stationary distribution and mean return time)
implies that if we can compute the stationary distribution, then we
can obtain the mean return time. Perron-Frobenius Theorem says
that (if a stationary measure is finite then) if a transition matrix P
is irreducible, then there is an unique stationary distribution as a
(normalized) nontrivial solution of uP = p.

Indeed, if we consider a random knight problem, then the
corresponding matrix P is 64 x 64 matrix (, which is a sparse
matrix (including a lot of 0 elements)). If we solve uP = p, it
seems hard to compute it directly.

But following results give us the stationary distribution of P.

NAGAHATA On Markov processes



Markov processes

Definition (random walk on a graph)

A transition matrix P is called a random walk on a graph iff
Pxx =0

If Py, >0, then P, , >0

For x,y,z€ S, if P, >0and P,, >0 then P, = P, ,

Note: If a transition matrix is a random walk on graph, then we
set this graph as follows;

Let S be a state space. We regard S as a set of vertices of the
graph. We define E a set of (undirected) edges as
E={(x,y);x,yeS, Pxy >0} Then G=(S,E)isa (an
undirected) graph. The Markov process given by P moves on this
graph along the edges. If this process stands at x, then it chooses
one of an edges (x,y) € E with the same probability.
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Given a random walk on a graph with transition matrix P, we

define = (p1,- .., ftn) by px = #{y; Px, > 0}.
Note that uy is given by the degree of the vertex x.

Theorem (random walk on a graph)

Suppose that P is a random walk on a graph. Then P is symmetric
with respect to u. Namely p is a stationary measure of P.

Note that by normalizing the stationary measure i, we obtain the
stationary distribution as

1
1%
Zx IU’X

The quantity ), s is twice as large as the total number of
(undirected) edges.
Proof

It is easy to see that for any x, y we have u, Py, = 1. O

NAGAHATA On Markov processes

m =



Markov processes

Transition matrices corresponding to random knight, random king
and random queen are random walks on graph. Hence by counting
the total number of edges, we get results.

In Japanese “Shogi” has pieces <, #}, whose transition matrices
are not random walk on graph. But writing a computer program,
we compute a stationary distribution. Result is as follows; (Due to
symmetry and a lack of space, we only write the result of the left
half part of 9 x 9 board (Shogi-board is 9 x 9))
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&

o | O
O [ ] 0]

O
30.791328 17.815554 17.111911 16.881724 16.824¢
35.324925 24.915491 25.076442 25.071163 25.0627
85.940838 67.42103 71.810424 73.470653 73.893:
215.529198 | 179.831729 | 201.712943 | 212.137365 | 215.112
550.125457 | 476.83005 | 558.232434 | 603.699589 | 617.821
1419.270985 | 1261.152818 | 1527.8363 | 1696.096853 | 1752.161
3681.111795 | 3328.221102 | 4149.011752 | 4722.384145 | 4924.695
9499.054514 | 8719.120537 | 11269.92047 | 13163.67467 | 13854.67

45254.73054 | 47919.1:

29920.38808

28154.66878

38005.94435
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iR
o| O] O
[ ]

O (0]
67.813349 45504115 | 44.201301 | 45.805548 | 45.524978
49.629111 24.907000 | 27.663759 | 27.158334 | 27.633778
72.368415 43.904072 | 40.570712 | 42.020332 | 41.348125
121.449120 | 65.709962 | 65.736386 | 63.129401 | 64.097269
185.413674 | 106.341529 | 99.792808 | 99.383662 | 97.215698
296.189600 | 163.363762 | 157.864619 | 151.766057 | 152.14016¢
461.498716 | 258.665768 | 242.750465 | 236.878209 | 232.70745-
742.552272 | 405.113035 | 376.585647 | 361.925390 | 359.45015:
2025.565173 | 1020.418715 | 955.758462 | 919.546091 | 904.81347
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