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Markov processes

Applications of theorems.
Applying the Proposition (limit of transition matrix), which is
implied by Perron-Frobenius theorem, we have followings; Suppose
that P is a irreducible transition matrix with period 1, then we have

lim
n→∞

Pn =

 µ
...
µ


and µ > 0 is a unique stationary distribution. Hence ∃n0 s.t.
∀n ≥ n0, then Pn

x ,x ≥ µx/2 > 0. This estimate implies∑
n

P(Xn = x |X0 = x) =
∑
n

Pn
x ,x = ∞

namely ∀x is recurrent.
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Though an irreducible transition matrix P has period d ≥ 2, we
can decompose P into d positive block matrices, namely ∃n s.t.

Pn =


P1

P2

. . .

Pd


where Pi > 0 for all i . Similarly, we have∑

m

P(Xm = x |X0 = x) =
∑
m

Pm
x ,x ≥

∑
k

Pkn
x ,x = ∞

and ∀x is recurrent.
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On recurrent and transient

If we consider recurrent or transient for some finite state Markov
process, then we have no interesting result. If we consider some
infinite state Markov process, then we have some interesting
resuts. For example, if we consider mean 0 random walk on Zd ,
then we have it is recurrent if d = 1, 2 and transient d ≥ 3.
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We are interested in a mean return time.
One of the interesting example is random knight problem a follows;
Chess is one of a popular game. We play chess on 8× 8
chessboard. Knight is a piece of a chess such that we can move it
from black circle to white circle.

◦ ◦
◦ ◦

•
◦ ◦

◦ ◦

When a knight drank and move randomly, can we compute a mean
return time E [Tx |X0 = x ] ? Here the knight only move from black
circle to white circle with equal probability.
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It seems hard to compute E [Tx |X0 = x ] by means of
P(Tx = k|X0 = x). But as a result, we know the results as

168 112 84 84

112 84 56 56

84 56 42 42

84 56 42 42

where we only write the mean return time only upper left part, due
to symmetry.
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Similarly
king

◦ ◦ ◦
◦ • ◦
◦ ◦ ◦

,

140 84 84 84

84 105/2 105/2 105/2

84 105/2 105/2 105/2

84 105/2 105/2 105/2

queen

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ • ◦ ◦
◦ ◦ ◦

◦ ◦ ◦

,

208/3 208/3 208/3 208/3

208/3 1456/23 1456/23 1456/23

208/3 1456/23 1456/25 1456/25

208/3 1456/23 1456/25 1456/27
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For (each) fixed x , we define

µy = µx
y =

∞∑
n=0

P(Xn = y ,Tx > n|X0 = x)

Note that:
(1) If x ̸→ y , then µy = 0.
(2) If Xn = x , then Tx ≤ n. This implies for n ≥ 1, we have
P(Xn = x ,Tx > n|X0 = x) = 0. Hence we have

µx = P(X0 = x ,Tx > 0|X0 = x) = 1

(3) Suppose that x is recurrent. If x → y , then it is also y → x .
Hence µ is positive if x ↔ y .
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Theorem (stationary measure)

Suppose that x is recurrent. Then this µ is a stationary measure.

Proof
Suppose that y ̸= x . By using Markov property, we have

P(Xn+1 = z ,Xn = y ,Tx > n|X0 = x)

= P(Xn+1 = z ,Xn = y ,Xn−1 ̸= x , . . . ,X1 ̸= x |X0 = x)

= P(Xn+1 = z |Xn = y)P(Xn = y ,Xn−1 ̸= x , . . . ,X1 ̸= x |X0 = x)

= Py ,zP(Xn = y ,Tx > n|X0 = x)

We also have

P(Xn = x ,Tx > n|X0 = x) = 0
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Taking summation over all y , we have∑
y ̸=x

P(Xn+1 = z ,Xn = y ,Tx > n|X0 = x)

=
∑
y

Py ,zP(Xn = y ,Tx > n|X0 = x)

Left hand side is equal to

P(Xn+1 = z ,Tx > n + 1|X0 = x), if z ̸= x

P(Tx = n + 1|X0 = x), if z = x
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We note that P(X0 = z |X0 = x) = 0 if z ̸= x . Taking summation
over n, for both side. The sum of left hand side for z ̸= x is

∞∑
n=0

P(Xn+1 = z ,Tx > n + 1|X0 = x)

=
∞∑
n=0

P(Xn = z ,Tx > n|X0 = x) = µz

and that for z = x is

∞∑
n=0

P(Tx = n + 1|X0 = x) = P(Tx < ∞|X0 = x) = 1 = µx

since x is recurrent.
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By changing the order of the summation, the sum of right hand
side (which does not depend on z) is

∞∑
n=0

∑
y

Py ,zP(Xn = y ,Tx > n|X0 = x)

=
∑
y

∞∑
n=0

P(Xn = y ,Tx > n|X0 = x)Py ,z =
∑
y

µyPy ,z

Hence we conclude that µ = µP.
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Theorem (uniqueness)

If P is an irreducible and recurrent, then stationary measure is
unique up to multiple constant. Furthermore, stationary measure is
positive for all x .

Note that in this theorem, we assumed the irreducible. Hence if
there is x such that x is recurrent, then all y is also recurrent.
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Note: We consider an one dimensional random walk. A stationary
measure µ satisfies

µx = qµx+1 + pµx−1, for all x

We can solve this system of linear equations, the basis of the
solutions are given by

µ1
x = 1, µ2

x =

(
p

q

)x

, if p ̸= q

µ1
x = 1, µ2

x = x , if p = q

Combining these two basis, if p ̸= q, we take ν = c1µ
1 + c2µ

2 for
c1, c2 ≥ 0, (c1, c2) ̸= 0, then they are stationary measures for the
random walk. If p = q then only ν = c1µ

1 for c1 > 0 are
stationary measures. In fact, in this setting random walk is
recurrent iff p = q.
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Proof
We fixed x and made µ = µx . We have proved that this µ is
stationary measure. Furthermore, by using irreducible, we have
{n;P(Xn = y |X0 = x) > 0} ̸= ∅. Hence we set

n = ny = min{n;P(Xn = y |X0 = x) > 0},

Then we have

0 < P(Xn = y |X0 = x) = P(Xn = y ,Tx > n|X0 = x) ≤ µy

namely, this stationary measure is positive for all y .
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We show that if ν̃ is a stationary measure, then we have ∃a ∈ S ,
C > 0 s.t. ν̃ = Cµa.
By using the argument of the proof of this claim, if we apply this
claim for ν̃ = µy , then we can take a = x . Hence we conclude that
all stationary measure is the same up to multiple constant.
Since there is at least one a ∈ S such that ν̃a > 0, we normalize ν̃
as

νx =
ν̃x
ν̃a

It is obvious that this ν is also stationary measure. We show that
ν = µa.
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Since ν is a stationary measure, it satisfies νP = ν. We regard a
as a special point. Then we can rewrite

νz =
∑
y

νyPy ,z

= νaPa,z +
∑
y ̸=a

νyPy ,z

Since νa = 1, we have
νz ≥ Pa,z

Substituting this inequality into above identity, we have

νz ≥ Pa,z +
∑
y ̸=a

Pa,yPy ,z

= Pa,z + P(X2 = z ,X1 ̸= a|X0 = a)

= Pa,z + P(X2 = z ,Ta > 1|X0 = a)
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Similarly substituting this inequality into the above identity, we
have

νz ≥ Pa,z +
∑
y ̸=a

Pa,yPy ,z +
∑
y ̸=a

Py ,zP(X2 = y ,Ta > 1|X0 = a)

= Pa,z + P(X2 = z ,X1 ̸= a|X0 = a)

+ P(X3 = z ,X2 ̸= a,Ta > 1|X0 = a)

= Pa,z + P(X2 = z ,Ta > 1|X0 = a)

+ P(X3 = z ,Ta > 2|X0 = a)

Inductively, we conclude that

νz ≥ Pa,z +
N∑

n=2

P(Xn = z ,Ta > n − 1|X0 = a), ∀N

NAGAHATA On Markov processes



Markov processes

If z ̸= a, then we have

νz ≥
N∑

n=0

P(Xn = z ,Ta > n|X0 = a) → µa
z , (N → ∞)

If z = a, then since νa = µa
a = 1. Hence we have

νz ≥ µa
z , ∀z

Since ν is a stationary measure, we have

1 = νa =
∑
y

νyP
n
y ,a ≥

∑
y

µa
yP

n
y ,a = µa

a = 1

for all n ≥ 0.
This inequality implies that if Pn

y ,a > 0 then νy = µa
y . Since we

assumed that P is irreducible, for any y there is n such that
Pn
y ,a > 0. Hence we conclude that ν = µa.
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Theorem (stationary distribution and mean return time)

Suppose that P is an irreducible matrix with stationary distribution
π. Then all x is recurrent and it satisfies

πx =
1

E [Tx |X0 = x ]
=

1
∞∑
n=0

P(Tx > n|X0 = x)

Note that if a stationary measure µ satisfiew
∑

x µx < ∞. Then
by normalizing µ as

πx =
µx∑
y

µy

we have stationary distribution π.
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Proof
The second identity is implied by following general result;

Problem

Show that if Y is a nonnegative integer valued random variable,
then we have

E [Y ] =
∞∑
n=0

P(Y > n).

(Here we allow ∞ = ∞.)
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On recurrent
Since π is a stationary distribution, there is at least one x ∈ S such
that πx > 0. Furthermore, we have

πz = (πPn)z =
∑
y

πyP(Xn = z |X0 = y) ≥ πxP(Xn = z |X0 = x)

Since P is irreducible, for each z , there is n such that
P(Xn = z |X0 = x) > 0. Hence we conclude that π > 0.
Since π is a stationary distribution, we have πz =

∑
y πyP

n
y ,z .

Taking summation over n, we have

∞ =
∞∑
n=0

πz =
∞∑
n=0

∑
y

πyP
n
y ,z =

∑
y

πy

∞∑
n=0

Pn
y ,z
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We decompose the probability Pn
y ,z = P(Xn = z |X0 = y) into that

for the first hitting time of the Markov process to z . Then we have

Pn
y ,z = P(Xn = z |X0 = y) =

n∑
k=1

P(Xn = z ,Tz = k|X0 = y)

=
n∑

k=1

P(Xn = z ,Xk = z ,Tz = k |X0 = y)

=
n∑

k=1

P(Xn = z |Xk = z)P(Tz = k |X0 = y)

=
n∑

k=1

Pn−k
z,z P(Tz = k|X0 = y)
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By changing the order of the summation, we have

∞∑
n=0

Pn
y ,z =

∞∑
n=0

n∑
k=1

Pn−k
z,z P(Tz = k|X0 = y)

=
∞∑
l=0

P l
z,z

∞∑
k=1

P(Tz = k |X0 = y)

=
∞∑
l=0

P l
z,zP(Tz < ∞|X0 = y) ≤

∞∑
l=0

P l
z,z

Since π is a stationary distribution, we have
∑

y πy = 1. Hence we
have

∞ =
∑
y

πy

∞∑
n=0

Pn
y ,z ≤

∑
y

πy

∞∑
l=0

P l
z,z ≤

∞∑
l=0

P l
z,z

This inequality implies that z is recurrent.
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Finally, we show that

πx =
1

∞∑
n=0

P(Tx > n|X0 = x)

The Theorem (uniqueness) implies that µx defined for each x ,
which is

µx
y =

∞∑
n=0

P(Xn = y ,Tx > n|X0 = x),

is the same as π up to multiple constant. Hence we normalize this
and obtain

π =
1∑
y µ

x
y

µx , ∀x .
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Since we haveµx
x = 1, by changing the order of summation, we

have ∑
y

µx
y =

∑
y

∞∑
n=0

P(Xn = y ,Tx > n|X0 = x)

=
∞∑
n=0

∑
y

P(Xn = y ,Tx > n|X0 = x)

=
∞∑
n=0

P(Tx > n|X0 = x)

Hence we conclude that

πx =
1

∞∑
n=0

P(Tx > n|X0 = x)
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This Theorem (stationary distribution and mean return time)
implies that if we can compute the stationary distribution, then we
can obtain the mean return time. Perron-Frobenius Theorem says
that (if a stationary measure is finite then) if a transition matrix P
is irreducible, then there is an unique stationary distribution as a
(normalized) nontrivial solution of µP = µ.
Indeed, if we consider a random knight problem, then the
corresponding matrix P is 64× 64 matrix (, which is a sparse
matrix (including a lot of 0 elements)). If we solve µP = µ, it
seems hard to compute it directly.
But following results give us the stationary distribution of P.
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Definition (random walk on a graph)

A transition matrix P is called a random walk on a graph iff
Px ,x = 0
If Px ,y > 0, then Py ,x > 0
For x , y , z ∈ S , if Px ,y > 0 and Px ,z > 0 then Px ,y = Px ,z

Note: If a transition matrix is a random walk on graph, then we
set this graph as follows;
Let S be a state space. We regard S as a set of vertices of the
graph. We define E a set of (undirected) edges as
E = {(x , y); x , y ∈ S , Px ,y > 0}. Then G = (S ,E ) is a (an
undirected) graph. The Markov process given by P moves on this
graph along the edges. If this process stands at x , then it chooses
one of an edges (x , y) ∈ E with the same probability.
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Given a random walk on a graph with transition matrix P, we
define µ = (µ1, . . . , µn) by µx = #{y ;Px ,y > 0}.
Note that µx is given by the degree of the vertex x .

Theorem (random walk on a graph)

Suppose that P is a random walk on a graph. Then P is symmetric
with respect to µ. Namely µ is a stationary measure of P.

Note that by normalizing the stationary measure µ, we obtain the
stationary distribution as

π =
1∑
x µx

µ

The quantity
∑

x µx is twice as large as the total number of
(undirected) edges.
Proof
It is easy to see that for any x , y we have µxPx ,y = 1.
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Transition matrices corresponding to random knight, random king
and random queen are random walks on graph. Hence by counting
the total number of edges, we get results.
In Japanese “Shogi” has pieces 金, 銀, whose transition matrices
are not random walk on graph. But writing a computer program,
we compute a stationary distribution. Result is as follows; (Due to
symmetry and a lack of space, we only write the result of the left
half part of 9× 9 board (Shogi-board is 9× 9))
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金

◦ ◦ ◦
◦ • ◦

◦
30.791328 17.815554 17.111911 16.881724 16.824845 16.881724 17.111911 17.815554 30.791328

35.324925 24.915491 25.076442 25.071163 25.062704 25.071163 25.076442 24.915491 35.324925

85.940838 67.42103 71.810424 73.470653 73.893206 73.470653 71.810424 67.42103 85.940838

215.529198 179.831729 201.712943 212.137365 215.112412 212.137365 201.712943 179.831729 215.529198

550.125457 476.83005 558.232434 603.699589 617.821704 603.699589 558.232434 476.83005 550.125457

1419.270985 1261.152818 1527.8363 1696.096853 1752.161937 1696.096853 1527.8363 1261.152818 1419.270985

3681.111795 3328.221102 4149.011752 4722.384145 4924.695431 4722.384145 4149.011752 3328.221102 3681.111795

9499.054514 8719.120537 11269.92047 13163.67467 13854.67494 13163.67467 11269.92047 8719.120537 9499.054514

29920.38808 28154.66878 38005.94435 45254.73054 47919.13821 45254.73054 38005.94435 28154.66878 29920.38808
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銀

◦ ◦ ◦
•

◦ ◦
67.813349 45.504115 44.201301 45.805548 45.524978 45.805548 44.201301 45.504115 67.813349

49.629111 24.907000 27.663759 27.158334 27.633778 27.158334 27.663759 24.907000 49.629111

72.368415 43.904072 40.570712 42.020332 41.348125 42.020332 40.570712 43.904072 72.368415

121.449120 65.709962 65.736386 63.129401 64.097269 63.129401 65.736386 65.709962 121.449120

185.413674 106.341529 99.792808 99.383662 97.215698 99.383662 99.792808 106.341529 185.413674

296.189600 163.363762 157.864619 151.766057 152.140169 151.766057 157.864619 163.363762 296.189600

461.498716 258.665768 242.750465 236.878209 232.707452 236.878209 242.750465 258.665768 461.498716

742.552272 405.113035 376.585647 361.925390 359.450153 361.925390 376.585647 405.113035 742.552272

2025.565173 1020.418715 955.758462 919.546091 904.813474 919.546091 955.758462 1020.418715 2025.565173

NAGAHATA On Markov processes


