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stationary measure, stationary distribution

Definition (stationary measure, stationary distribution)

Suppose that we set µ = (µx1 , µx2 , . . . , µxn) if the state space is a
finite set and #S = n, and µ = (µx1 , µx2 , . . . , ) if the state space S
is a countable set. We also suppose that ∀x , µx ≥ 0 and µ ̸= 0.
If it satisfies µP = µ, then we call µ a stationary measure or
invariant measure, furthermore if it also satisfies

∑
x µx = 1, then

we call µ a stationary distribution or invariant distribution.

Note that if µ is a stationary measure, then Cµ for some positive
constant C is also a stationary measure. If S is a finite set, then
we set 1/C =

∑
x µx , then Cµ becomes a stationary distribution.
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If the size of the transition matrix P is large, it is always hard to
find a stationary measure µ. But following results is applicable to
find a stationary measure.

Problem

Show the following;
Suppose that π > 0 and P is symmetric with respect to P, then π
is a stationary measure for P.
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We only say that for any π > 0

Q =
1

12

 2 8 2
5 2 5
5 2 5


is not symmetric with respect to π.
If we prove this by means of matrix theory, then we consider the
system of equations

πxQx ,y = πyQy ,x , x , y = a, b, c ,

and find some nontrivial solution. Canonical solution is compute
the rank of corresponding matrix.
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But if we prove this by means of Markov process theory, then we
use the last Problem.
If there is π such that Q is symmetric with respect to π, then π is
a stationary measure for Q. By the definition of the stationary
measure, π is the left eigenvector of Q whose eigenvector is 1. In
this example, we have already computed the eigenvalues
(1, 0,−1/4). It is easy to compute that the corresponding
eigenvector is π = (1, 1, 1). Finally we only check that this Q is
symmetric with respect to this π or not.
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For a given measure µ > 0, we define a (weighted) inner product
⟨·, ·⟩µ by

⟨x , y⟩µ =
∑
i

xiyiµi .

Usual inner product is given by ⟨x , y⟩1 for 1 = (1, 1, . . . , 1).
For given a matrix A and a measure µ. If it satisfies
⟨x ,Ay⟩µ = ⟨y ,A∗x⟩µ for all x , y then we call A∗ an adjoint matrix
with respect to µ.

Problem

Show that (A∗
µ)i ,j = µ−1

i Aj ,iµj .
Show also that if A is symmetric with respect to µ then (A∗

µ) = A.

First part of this Problem implies following Proposition;
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Proposition (relation between P∗ and stationary measure)

Let P be a transition matrix. The adjoint matrix P∗
µ is also a

transition matrix, iff µ is a stationary distribution of P.

Proof
By the first part of the last Problem, we have (P∗

µ)i ,j = µ−1
i Pj ,iµj .

Hence we have (P∗
µ)i ,j ≥ 0.

We have only to show that ∀i ,
∑

j(P
∗
µ)i ,j = 1 iff µ is a stationary

distribution. Note that∑
j

(P∗
µ)i ,j =

∑
j

µ−1
i Pj ,iµj = µ−1

i

∑
j

µjPj ,i .

If µ is a stationary distribution, then the right hand side of this
expression is 1 and if not, then there is at least one i such that∑

j µjPj ,i ̸= µi .

NAGAHATA On Markov processes



Markov processes

Theorem (Perron-Frobenius)

Let A be a nonnegative irreducible square matrix. Then we have
following results;
(1) Let ρ(A) be a spectral radius of A. Namely, ρ(A) = max{|λi |}
where λi are eigenvalues of A. Then A has an eigenvalue ρ(A).
(2) The eigenvalue related to ρ(A) is positive.
(3) ρ(A) is increasing function of each elements of A.
(4) ρ(A) is simple.

Note that ρ(A) is called the Perron-Frobenius eigenvalue, etc.
Proof
In order to prove this theorem, we prepare some notations and
lemmas.
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For nonnegative vector x , we define

rx := min{(Ax)i
xi

; xi > 0}.

Furthermore, we define

r := sup{rx ; x ≥ 0, x ̸= 0}.

Note that it is easy to see that

r := sup{rx ; x ≥ 0, ∥x∥ = 1}.

A nonnegative vector z is called extremal or an extremal vector iff

Az ≥ rz
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Since A is irreducible, ∃n s.t. (I + A)n > 0 . For nonnegative
vector y with ∥y∥ = 1, we define

T (y) := y ′ = ỹ ′/∥ỹ ′∥, ỹ ′ = (I + A)ny

Then we have y ′ > 0 and ∥y ′∥ = 1. Since Ay ≥ ryy , we have

(Ay ′)i
y ′i

=
((I + A)nAy)i
(I + A)ny)i

≥ (ry (I + A)ny)i
(I + A)ny)i

≥ ry

Hence if we set B := {y ; nonnegative vectors with ∥y∥ = 1}, then
we have TB ⊂ {y ; positive vectors with ∥y∥ = 1}(= B ′) ⊂ B and

r := sup{rx ; xinTB}.

The definition of rx is continuous in B ′ and there is a closed set
B ′′ such that TB ⊂ B ′′ ⊂ B ′. Hence a set of extremal vectors is
not empty.
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Lemma (extremal vector)

Let A be a nonegative irreducible square matrix. Then we have
(1) r > 0
(2)The extremal vector z is positive and an eigenvector of A
corresponding to r . Namely, Az = rz
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Proof
(1) For any positive vector x , Ax is also positive vector. By the
definition of r , we have r > 0.
(2) Since A is irreducible, (I + A)n is positive matrix for large
enough n. By the definition of the extremal vector, we have
y = Az − rz ≥ 0. Suppose that y ̸= 0 and we set
w = (I + A)nz > 0. Then we have

Aw − rw = A(I + A)nz − r(I + A)nz = (I + A)ny > 0.

Then we have

rw = min
i
{Awi

wi
} = min

i
{ rwi + ((I + A)ny)i

wi
} > r

This inequality contradict to the definition of r . Namely y = 0 and
Az = rz .
Under this condition we have 0 < w = (I + A)nz = (1 + r)nz ,
namely z is a positive vector.
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Lemma (comparison of matrices)

Let A be a nonnegative irreducible square matrix and B be a
complex matrix such that |B| ≤ A.
If β is an eigenvalue of B, then

|β| ≤ r .

Furthermore |β| = r iff |B| = A and if β = re iϕ then there is a
diagonal matrix D whose diagonal elements di satisfy |di | = 1 such
that

B = e iϕDAD−1
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Proof
Suppose that y ̸= 0 and By = βy . By comparing each
elements,we have

|β||y | ≤ |B||y | ≤ A|y |

namely |β| ≤ r|y | ≤ r .
Suppose that |β| = r . Then we have |β||y | ≤ A|y |. Hence |y | is an
extremal vector. By using last Lemma, |y | is an eigenvector of A
corresponding to r , i.e., r |y | = A|y |. This identity and above
inequality imply

r |y | = |B||y | = A|y |

Since |y | is positive vector and |B| ≤ A we conclude that |B| = A.
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For |y | > 0, we set

D =

 y1/|y1|
. . .

yn/|yn|


Then this matrix satisfies the condition of D in this Lemma and we
can rewrite y = D|y |. Suppose that β = re iϕ. Then we can rewrite
By = βy as

BD|y | = By = βy = e iϕrD|y |, namely e−iϕD−1BD|y | = r |y |

Hence we conclude that

|e−iϕD−1BD| = |B| = A, e−iϕD−1BD|y | = r |y | = A|y |

Finally, following Problem implies B = e iϕDAD−1.
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Problem

Prove following;
Suppose that C be a complex matrix. If ∃y > 0 s.t.

|C |y = Cy

then |C | = C .
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Taking B = A in this lemma, we have

Corollary (comparison of matrices)

Suppose that A is a nonnegative and irreducible square matrix.
Then r = ρ(A).

A matrix B obtained from a matrix A by removing j-th row and
j-th column (We allow removing more than one row and column)
is called a principal submatrix.

Lemma (comparison of spectral radii)

Suppose that A is a nonnegative and irreducible square matrix.
Then for any principal submatrix B, we have ρ(A) > ρ(B).
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Proof
Let P be a matrix such that it only changes the order of columns
such that

A′ = PAP−1 =

(
B A1,2

A2,1 A2,2

)
Since the eigenvalues of A and that of A′ coincides. Hence we
compare the value of ρ(A′) and ρ(B). We set

C =

(
B 0
0 0

)
Then it is obvious that ρ(B) = ρ(C ) and 0 ≤ C ≤ A′, C ̸= A.
Hence we can apply last lemma and obtain ρ(B) < ρ(A).
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Problem

Prove following;
Suppose that each element of a square matrix A(t) is differentiable.
We set A(t) = (a1(t), a2(t), . . . , an(t)). Then we have

d

dt
detA(t) =

∑
i

det(a1(t), . . . ,
d

dt
ai (t), . . . , an(t))

where
(

d
dt a

)
i
= d

dt (a(t))i . Applying this identity by substituting

A(t) = tI − B for constant matrix B we have

d

dt
det(tI − B) =

∑
i

det(tI − Bi )

where Bi is a principal submatrix by removing i-th row and column
from B.
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We restart the proof of the Theorem.
(1) and (2) are given by Lemma (extremal vedtor) and Corollary
(comparison of matrices).
(3) is given by Lemma (comparison of matrices).
(4) is given as follows. Let Ai be a principal submatrix by removing
i-th row and column from A. By Lemma (comparison of spectral
radii), we have ρ(Ai ) < ρ(A). Hence we have det(ρ(A)I − Ai ) > 0
(∀i). This and the last Problem imply that

d

dt
det(tI − A)|t=ρ(A) =

∑
i

det(tI − Ai )|t=ρ(A) > 0

This identity implies that ρ(A) is simple.
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Proposition

Suppose that A is a nonnegative irreducible square matrix. If
nonnegative vector u satisfies Au = λu, then λ = ρ(A).

In probability theory, by using this Proposition it is easy to see that
for any transition matrix P, we have ρ(P) = 1.
Proof
We can apply Perron-Frobenius theorem to tA. Hence there is a
positive vector v such that tvA = ρ(A)tv . Since Au = λu, u is
positive and

ρ(A)tvu = (tvA)u = tv(Au) = λtvu

we have ρ(A) = λ.
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Proposition

Suppose that A is a positive square matrix. If λ, an eigenvalue of
A, satisfies λ ̸= ρ(A), then we have |λ| < ρ(A).

Proof
We can apply Perron-Frobenius theorem to tA. Hence there is a
positive vector v such that tvA = ρ(A)tv .
Suppose that Ax = λx and λ ̸= x . Then we have

λxi =
∑
j

ai ,jxj , |λ||xi | = |λxi | = |
∑
j

ai ,jxj | ≤
∑
j

ai ,j |xj |
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Since tvA = ρ(A)tv , multiplying vi > 0 to both side of the last
inequality and summing over i we have

|λ|
∑
i

vi |xi | ≤
∑
i ,j

viai ,j |xj | = ρ(A)
∑
j

vj |xj |

If it satisfies |λ| = ρ(A), then both this and previous inequalities
become identities, namely it satisfies

|
∑
j

ai ,jxj | =
∑
j

ai ,j |xj |

Since all elements of A are positive we can regard x as a positive
vector (up to multiple complex constant). By using last
Proposition, we conclude that if |λ| = ρ(A) then λ = ρ(A).
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Corollary

Suppose that A is a nonnegative square matrix and ∃k s.t. Ak is a
positive square matrix. Then if λ, an eigenvalue of A, satisfies
λ ̸= ρ(A), then |λ| < ρ(A).

Note that if an irreducible transition matrix P has period d , then
ρ(P) = 1 and ω, ω2, . . . , ωd−1 where ω = exp(i2π/d) are
eigenvalues of P.

Problem

Prove this Corollary.
Hint: Give a formula for eigenvalues of Ak by means of eigenvalues
of A.
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Proposition (limit of transition matrix)

Suppose that P is an irreducible transition matrix with period 1.
Then there exists limn→∞ Pn. Furthermore we have

lim
n→∞

Pn =

 µ
...
µ


where µ > 0 is an unique stationary distribution.

Proof
Since P is a transition matrix, if we set u = t(1, . . . , 1), then

Pu = u

By applying Perron-Frobenius theorem, we have ρ(P) = 1.
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Since we assumed that period of P is 1, there is k , large enough
such that Pk is positive matrix. Hence by last Corollary, for any λ,
eigenvalues of P such that λ ̸= 1 satisfies |λ| < ρ(P) = 1.
Since 1 is an eigenvalue of P, there is v such that

vP = v

By applying Perron-Frobenius theorem, we have the eigenvalue 1 is
simple and v > 0. We normalize v as

µ =
1∑
i vi

v

then we get the unique stationary distribution.
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Let Q−1PQ = Λ be a diagonalization (or Jordan normal form) of
P with λ1 = 1. Suppose that we can write Q = (q1, q2, . . . , qn),
Q−1 = t(q′1, q

′
2, . . . , q

′
n). Then q1 and q′1 are eigenvectors related

to the eigenvalue 1 and it satisfies tq′1q1 = 1. Hence we can set

q1 =
t(1, 1, . . . , 1), tq′1 = (µ1, µ2, . . . , µn) = µ

Since for any λ, eigenvalues of P such that λ ̸= 1 satisfies
|λ| < ρ(P) = 1, we have

lim
n→∞

Pn = lim
n→∞

QΛnQ−1

= Q


1

0
. . .

0

Q−1 =


1 0 · · · 0
1 0 · · · 0
...

...
1 0 · · · 0

Q−1 =

 µ
...
µ
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