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Markov processes

Suppose that (Xn)n≥0 is a Markov process. If (Xn)n≥0 satisfies

P(Xn+1 = y |Xn = x) = P(X1 = y |X0 = x), ∀n

then we call time homogeneous Markov process. In this lecture we
only consider time homogeneous Markov process.
Let (Xn)n≥0 be a time homogeneous Markov process. We set a
(huge size) square matrix

Px ,y := P(X1 = y |X0 = x)

Then we call P = (Px ,y ) transition matrix or transition probability
matrix.

matrix formulation?

We only consider P(X1 = y |X0 = x). Is it possible to formulate the
conditional probability P(Xn+m = y |Xm = x) by means of Px ,y?

NAGAHATA On Markov processes



Markov processes

We have following identities;

P(Xn+m = y |Xm = x)

= P(Xn+m = y ,
∪

yn+m−1

Xn+m−1 = yn+m−1|Xm = x)

=
∑

yn+m−1

P(Xn+m = y ,Xn+m−1 = yn+m−1|Xm = x)

=
∑

yn+m−1

P(Xn+m = y |Xn+m−1 = yn+m−1)

× P(Xn+m−1 = yn+m−1|Xm = x)

=
∑

yn+m−1

P(Xn+m−1 = yn+m−1|Xm = x)Pyn+m−1,y
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Inductively, we have

P(Xn+m = y |Xm = x)

=
∑

yn+m−1

P(Xn+m−1 = yn+m−1|Xm = x)Pyn+m−1,y

...

=
∑
ym+1

∑
ym+2

· · ·
∑

yn+m−1

Px ,ym+1Pym+1,ym+2 · · ·Pyn+m−1,y

= (Pn)x ,y

Namely the conditional probability P(Xn+m = y |Xm = x) is given
by n-th power of P.
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Definition (a random mapping representation)

A random mapping representation of transition matrix P is a
function f : S × Λ → S for some Λ and a random variable Z with
state space Λ and probability law Q such that it satisfies

Q({f (x ,Z ) = y}) = Px ,y

Proposition (a random mapping representation)

Suppose that P be a transition matrix of some time homogeneous
Markov process with finite state space S . Then we have a random
mapping representation f and Z .
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This Proposition is one of the most important Proposition, when
we write a program of some computer simulation. In particular, we
write a program along the proof of this Proposition.
It is natural and applicable for us to set Λ = [0, 1] and Z an
uniform random variable on [0, 1].
We can extend this Proposition such that we exchange a finite
state space into countable state space (or much wide class). On
the other hands, if we consider the application to the computer
simulation, then a finite state space condition is reasonable.
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Proof
Since S is finite set, without loss of generality, we set
S = {s1, s2, . . . , sn}. Let Λ = [0, 1] and Z be an uniform random
variable on Λ = [0, 1].
We set {Fj ,k ; 1 ≤ j ≤ n, 0 ≤ k ≤ n} by

Fj ,0 = 0, Fj ,k =
∑k

i=1 Psj ,si . Furthermore we set f : S × Λ → S by
f (sj , z) := sk if Fj ,k−1 < z ≤ Fj ,k . Here we have f (s, 0) = s1.
Then we can verify

Q({f (x ,Z ) = y}) = Px ,y
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Since the matrix P is given by the transition probability, i.e.,
Px ,y = P(X1 = y |X0 = x), we have

0 ≤ Px ,y ≤ 1, ∀x , y∑
y

Px ,y = 1, ∀x

Conversely, if a matrix P satisfies these two identities, then there is
a corresponding Markov process.
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We have already seen that the conditional probability
P(Xn+m = y |Xm = x) is given by the n-th power of a matrix P.
Some computation, in particular, eigenvalue, eigenvector and
diagonalization is one of the important subject.
Suppose that we can diagonalize the transition matrix P as

Q−1PQ = Λ, P = QΛQ−1

Λ =

 λ1

. . .

λn


If the all eigenvalues λi are real value, then it is easy to treat. One
of the famous sufficient condition is that P is symmetric, i.e.,
Px ,y = Py ,x for all x , y .
We have an extension of this result as follows;
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Definition (π-symmetric)

An n × n matrix P is symmetric with respect to
π = (π1, π2, . . . , πn) > 0, if and only if for all x , y it satisfies

πxPx ,y = πyPy ,x

Let Π and
√
Π be diagonal matrices defined via π by

Π =

 π1
. . .

πn

 ,
√
Π =


√
π1

. . .
√
πn


and we define a matrix S by

S =
√
ΠP

√
Π
−1

,
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then we can have

S =
√
ΠP

√
Π
−1

=
√
Π
−1

(ΠP)
√
Π
−1

Problem

Prove that if P is symmetric with respect to π, then the matrix√
Π
−1

(ΠP)
√
Π
−1

is symmetric (in usual sense).

Since S is symmetric, we can diagonalize it by using real
eigenvalues by S = RΛR−1. Then we have

P =
√
Π
−1

S
√
Π = (

√
Π
−1

R)Λ(R−1
√
Π) = (

√
Π
−1

R)Λ(
√
Π
−1

R)−1.

Hence the matrix P is diagonalizable and the eigenvalues of P and
S coincides.
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Conversely, there is a matrix P such that the all eigenvalues are
real but for any π, P is not symmetric with respect to π.
Example We set

P =

 0 1 0
1/2 0 1/2
1/2 0 1/2


Then the eigenvalues of P is 1, 0,−1/2.
It is easy to see that if you can find a pair x , y such that Px ,y ̸= 0
and Py ,x = 0 then for any π, P is not symmetric with respect to π.
We set

Q =
1

12

 2 8 2
5 2 5
5 2 5


then the eigenvalues of Q is 1, 0,−1/4. But for any π, Q is not
symmetric with respect to π. (We shall prove it later.)
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equivalence class, ↔、irreducible

Definition (→、↔)

Let P be a transition matrix, then we define relations →、↔ by；
(1) x → x .
(2) if ∃n, x = x0, x1, x2, . . . , xn = y s.t. Pxi−1,xi > 0, 1 ≤ ∀i ≤ n
then x → y
(3) x → y and y → x then x ↔ y .

Problem

Show that the condition (2) is equivalent to ∃n s.t.
P(Xn = y |X0 = x) > 0 .
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Lemma (equivalence relation ↔)

The relation ↔ is an equivalence relation, namely it satisfies
(1) x ↔ x
(2) if x ↔ y then y ↔ x
(3) if x ↔ y and y ↔ z then x ↔ z

Problem

It seems obvious, but prove this lemma.

Definition(irreducible)

If it satisfies ∀x , y(∈ S) we have x ↔ y then we call that the state
space S is irreducible or the (transition) matrix P is irreducible.
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If S is not irreducible, then we can decompose S into several
classes by means of the equivalence relation ↔ and we only
consider following subject for each classes. Hence we only consider
the irreducible case.
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period

Definition (period)

For each x ∈ S we define N(x) := {n; (Pn)x ,x > 0} and dx := the
greatest common divisor of N(x). We call dx period.

Proposition (period)

If x ↔ y , then we have dx = dy
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Proof
Since x ↔ y , we have x → y and y → x , namely

∃n1, n2 s.t. P(Xn1 = y |X0 = x) > 0, P(Xn2 = x |X0 = y) > 0

Suppose that n ∈ N(x) (note that we allow n = 0) then

P(Xn = x |X0 = x) > 0.

Hence we have

P(Xn1+n+n2 = y |X0 = y)

≥ P(Xn1+n+n2 = y ,Xn+n2 = x ,Xn2 = x |X0 = y)

= P(Xn1 = x |X0 = y)P(Xn2 = x |X0 = y)P(Xn2 = x |X0 = y) > 0

namely, we have n1 + n + n2 ∈ N(y).
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Since we allow n = 0, we also have n1 + n2 ∈ N(y). By the
definition of dy , we have

∃k s.t. n1 + n2 = kdy

Similarly for any n ∈ N(x), we have n1 + n + n2 ∈ N(y) and

∃l s.t. n1 + n + n2 = ldy

Hence we have
n = (l − k)dy .

Namely we have dx ≥ dy .
In this argument, we can exchange the role of x and y . Hence we
also have dy ≥ dx .

NAGAHATA On Markov processes



Markov processes

Lemma

∃nx s.t. ∀k ≥ nx , kdx ∈ N(x)

Problem

Prove this lemma for dx = 1.

Suppose that dx = 1 and #S = n. Then it seems that nx ≤ n.
But if we set

P =


0 1/2 1/2 0
1 0 0 0
0 0 0 1
1 0 0 0


then n3 = 5 > 4 = n.
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Corollary

Suppose that S is irreducible. Then the period dx does not depend
on x ∈ S . Hence we set this period d . We may need to rearrange
the order in S and rewrite the transition matrix P, but we have
following;
∃n s.t.

Pn =


P1

P2

. . .

Pd


namely, we can decompose Pn into d block matrix. Furthermore
for all 1 ≤ i ≤ d , Pi > 0 (all entries of Pi is positive). Furthermore
for all 1 ≤ i ≤ d , Pi are transition matrices.
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Note that the matrix sizes of Pi in this corollary may not be the
same, for example following is the case such that d = 2 and n = 2.

P =

 0 0 1
0 0 1

1/2 1/2 0

 , P2 =

 1/2 1/2 0
1/2 1/2 0
0 0 1


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参考文献

少なくとも以下の教科書などは参考にしている。但し、ずいぶん
前に読んで勉強した教科書の内容をそれと認識せずに参考にして
いることもありえるのでその点に関してはご容赦頂きたい。
Markov 過程の基本的なところでは [K]の教科書の該当部分を多く
参考にしている。
ランダムナイトに関しては [AF]の教科書からアイデアを得ている
が、証明は [K]の教科書に沿っている。
Perron-Frobenius の定理は [V]の教科書の証明に沿っているが、
確率論的には [Sai][Sal][Se]の方がよいかもしれない。なお [Sai]は
非負の行列でなく正の行列で証明をしている。
スペクトルギャップに関しては [Sal]の結果を中心に、粒子系（格
子気体）への応用を述べた。粒子系への応用に関して明示的に書
かれたもの（教科書、論文）はないと思う。
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