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Markov processes

Suppose that (X,)n>0 is @ Markov process. If (X,),>0 satisfies
P(Xpt1 = y|Xn =x)=P(X1 =y|Xo =x), Vn

then we call time homogeneous Markov process. In this lecture we
only consider time homogeneous Markov process.

Let (Xn)n>0 be a time homogeneous Markov process. We set a
(huge size) square matrix

Py, == P(X1 = y|Xo = x)

Then we call P = (Py,,) transition matrix or transition probability
matrix.

matrix formulation?

We only consider P(X1 = y|Xp = x). Is it possible to formulate the
conditional probability P(Xp+m = y|Xm = x) by means of P, ,?
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We have following identities;

P(Xotm = y|Xm = x)
= P(Xn+m =Yy, U Xn+m71 = Yn+mfl|Xm = X)

Yn+m—1
= Z P(Xn+m = ,V7Xn+m—1 = )/n+m—1|Xm = X)
Yn+m—1
= Z P(Xn+m = y|Xn+m—1 = )/n+m—1)
Yn+m—1

X P(Xnerfl = _Vn+m71|Xm = X)
= Z P(Xn+m—1 = }/n+m—1|Xm = X)Py”m,l,y

Ynt+m—1
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Inductively, we have

P(Xn+m = y’Xm = X)
= Z 'D(Xn+m71 = yn+m*1|Xm = X)Pyn+m*1’y

Yn+m—1

- Z Z o Z P ymi1 Pymitymia = Pyaimo1y

Ym+1 Ym+2 Yn+m—1

= (Pn)X,y

Namely the conditional probability P(X,+m = y|Xm = x) is given
by n-th power of P.
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Definition (a random mapping representation

A random mapping representation of transition matrix P is a
function f : S x A — S for some A and a random variable Z with
state space A and probability law @ such that it satisfies

Q{f(x,2) = y}) = Pxy

Proposition (a random mapping representation)

Suppose that P be a transition matrix of some time homogeneous
Markov process with finite state space S. Then we have a random
mapping representation f and Z.
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This Proposition is one of the most important Proposition, when
we write a program of some computer simulation. In particular, we
write a program along the proof of this Proposition.

It is natural and applicable for us to set A =[0,1] and Z an
uniform random variable on [0, 1].

We can extend this Proposition such that we exchange a finite
state space into countable state space (or much wide class). On
the other hands, if we consider the application to the computer
simulation, then a finite state space condition is reasonable.
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Proof

Since S is finite set, without loss of generality, we set
S={s1,%,...,5,}. Let A=1]0,1] and Z be an uniform random
variable on A = [0, 1].

We set {Fj«;1<j<n0<k<n} by

Fio=0, Fj,= Ef‘zl Ps, ;. Furthermore we set f : S x A — S by
f(sj,z) := sk if Fjx—1 < z < Fj k. Here we have f(s,0) = s;.
Then we can verify

QU{f(x,2) = y}) = Pxy
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Since the matrix P is given by the transition probability, i.e.,
Py, = P(X1 = y|Xo = x), we have

0< Py <1, Vxy
> Py =1, Vx
y

Conversely, if a matrix P satisfies these two identities, then there is
a corresponding Markov process.
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We have already seen that the conditional probability

P(Xn+m = y|Xm = x) is given by the n-th power of a matrix P.
Some computation, in particular, eigenvalue, eigenvector and
diagonalization is one of the important subject.

Suppose that we can diagonalize the transition matrix P as

Q'PRQ=A  P=QAQ"
A1
A=
An
If the all eigenvalues A; are real value, then it is easy to treat. One
of the famous sufficient condition is that P is symmetric, i.e.,

P«y = Py x forall x,y.
We have an extension of this result as follows;
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Definition (7-symmetric)

An n x n matrix P is symmetric with respect to
m = (m1,m2,...,7) > 0, if and only if for all x, y it satisfies

Tx Py = Ty Py x

Let M and /11 be diagonal matrices defined via 7 by

m VT
n= ., V=

Tn VTn

and we define a matrix S by
-1
s=vnpvn -,



Markov processes

then we can have

S=VApVA =V (nPVA

Problem

Prove that if P is symmetric with respect to m, then the matrix
—1 —-1. ..
vl (MP)VIM ~ is symmetric (in usual sense).

Since S is symmetric, we can diagonalize it by using real
eigenvalues by S = RAR™. Then we have

P = VI SVl = (VAT RINRTIVA) = (VAT RNV R)

Hence the matrix P is diagonalizable and the eigenvalues of P and
S coincides.
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Conversely, there is a matrix P such that the all eigenvalues are
real but for any m, P is not symmetric with respect to .
Example We set

01 0
p=[ 12 0 1/2
1/2 0 1/2

Then the eigenvalues of P is 1,0, —1/2.

It is easy to see that if you can find a pair x, y such that P, # 0

and P, . = 0 then for any 7, P is not symmetric with respect to 7.
We set

1 2 8

RQ=—1]5 2

12 5 9

1o N

then the eigenvalues of Q is 1,0, —1/4. But for any 7, Q is not
symmetric with respect to m. (We shall prove it later.)
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equivalence class, <>, irreducible

Definition (—. )

Let P be a transition matrix, then we define relations —. <> by ;
(1) x — x.

(2) if 3n, x = x0, X1, X2, ..., xp =y st. Py, >0, 1<Vi<n
then x — y

(3) x » y and y — x then x < y.

Show that the condition (2) is equivalent to 3n s.t.
P(X, = y|Xo=x)>0.
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Lemma (equivalence relation <)

The relation < is an equivalence relation, namely it satisfies
(1) x > x

(2) if x <> y then y <» x

(3) if x> y and y <> z then x <> z

It seems obvious, but prove this lemma.

Definition(irreducible)

If it satisfies Vx, y(€ S) we have x <> ythen we call that the state
space S is irreducible or the (transition) matrix P is irreducible.
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If S is not irreducible, then we can decompose S into several
classes by means of the equivalence relation <> and we only
consider following subject for each classes. Hence we only consider
the irreducible case.
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period

Definition (period)
For each x € S we define N(x) := {n; (P")xx > 0} and dy := the
greatest common divisor of N(x). We call dy period.

Proposition (period)

If x <+ y, then we have d, = d,
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Proof
Since x <> y, we have x — y and y — x, namely

dni, e st. P(Xp, = y[Xo=x)>0, P(X,, =x|Xo=y) >0
Suppose that n € N(x) (note that we allow n = 0) then
P(X, = x|Xo = x) > 0.
Hence we have

P(Xny+n+m = y|Xo = y)
> P(Xn1+n+n2 =Y, Xn—i—ng =X, an = X‘XO = y)
= P(Xn, = x|Xo = y)P(Xn, = x| Xo = y)P(Xn, = x| Xo = y) >0

namely, we have ny +n+ ny € N(y).
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Since we allow n = 0, we also have n; 4+ n, € N(y). By the
definition of d,, we have

dk s.t. ny + npy = kd,
Similarly for any n € N(x), we have n; + n+ ny € N(y) and
dl'st. n+n+n=Id,

Hence we have
n=(l—k)d,.

Namely we have d, > d,.
In this argument, we can exchange the role of x and y. Hence we
also have dy, > d. O
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Lemma

dny s.t. Vk > ny, kdy € N(x)

Prove this lemma for d, = 1.

Suppose that dy = 1 and #S = n. Then it seems that n, < n.

But if we set
0 1/2 1/2 0
1 0 00
P= 0 0 01
1 0 00

then n3 =5 >4 =n.
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Corollary

Suppose that S is irreducible. Then the period d, does not depend
on x € S. Hence we set this period d. We may need to rearrange
the order in S and rewrite the transition matrix P, but we have
following;

dn s.t.

Py

namely, we can decompose P” into d block matrix. Furthermore
forall 1 <i<d, P; > 0 (all entries of P; is positive). Furthermore
for all 1 < < d, P; are transition matrices.
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Note that the matrix sizes of P; in this corollary may not be the
same, for example following is the case such that d =2 and n = 2.

0 01 1/2 1/2 0
P= 0 0 1], PP=|1/2 1/2 0
1/2 1/2 0 0 01
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