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Abstract - In this paper we shall examine the real-time
restoration of biomedical signals under additive noise. The

observation of these signals is defined by a mathematical
model. We proposed a couple of restoration filters,
composed of a series of the this model. These filters restored
band-limited approximations to their original signals in
real-time. We introduced the redundancy into the
restoration filter suppress the additive noise.

I. INTRODUCTION

During clinical analysis or diagnosis, nonstationary biomedical
signals, commonly referred to as the patient’s vital signs, are
measured. However, the instruments involved, such as catheter
manometers, ambulatory electrocardiographs and thermo-

dilution sensors, are themselves susceptible to distortion and
noise. We therefore need to be able to restore signals to their
original state. A couple of restoration filters, composed of

the observation model, were proposed [1]-[6]. These filters
restored band-limited approximations to their original signals
in real-time. However, the noise included in observed signals
has never been discussed. We therefore consider to suppress
the additive noise by introducing the redundancy into the

proposed filter. In this study, the theory behind, and application
of, a real-time restoration are discussed.

II.

A. Definition of Problem

We treat signals in L2[-~,

METHODS

CO]. Assume f to be an original

signal in L2, and A to be the observed operator from L2 to L2.
The observed signal, aO, is given by

ao=Af+n, (1)

where n is the additive noise. Assuming B to be the restoration
filter and P to be the band-limitation filter, a restored band-

limited signal, H, is defined by

Pf=Bao. (2)

We consider the following limitation, in the restoration process
in (2):

(i) Pf is nearly the same as J
(ii) real-time restoration.

To satisfy (ii), we restore the signal by using a signal observed
in the past. Assume A in (1) to be

The transfer functions of many biomedical instruments are
expressed by the combination of r(s). r(s) corresponds to
the first-order low-pass filter with a time constant ofs. Equation

(3) merely requires a signal from the past to the present.
Moreover, because the signal from the past decays

exponentially, the signal in the present time is emphasized in

(3). In this manner, r(s) naturally expresses the present-time
signal.

B. Band-Limited Restoration

In this section, we consider the band-limited restoration of
the signal. The observed systems are represented not only by
the first-order system in (3), but also by the higher-order
system. We define the Lth-order observed operator as

A = fir(~, ), Re{sl} >0
1=1

and the Mth-order band-limited operator as

(4)

P = r(~o)M, So< Re{.sl}, (5)

where { Sl} are any complex values. To satisfy (i) in section
A, so must be set to a small value.

We propose a restoration filter, which is composed of
the band-limited operator, r(sO). The fundamental observation

signals, {am}, are successively derived by

am = {1 - r(so)}am.l, m = 1,2,...,. (6)

By using {am}, we derive the order, M, and the coefficients,
{b~}, which satisfy

Pf= fb~a~. (7)
m=o

The restoration filter for (4) is derived by
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~=$bm{~-r(~o)}”. (8)
m =0

Equation (8) is composed of r(sO), which requires no future-
time signal. Thus, the restoration filter, B, satisfies (ii) in

section A.

C. Restoration Filter (M= L) [4]-[6]

To satisfy (7), the order of the restoration filter, M, must be
more than the order of the observation system, L. We reported
the restoration filter in the case of M=L, that was derived by

B = $ bm{I - r(~o)}”
m.0

where

(:)
bm= ~~s’(”j)‘sO.

i=(l j=l so

(9)

( 10)

(~) is a binomi 1a coefficient and d(ij) is the natural number

that satisfies 1 sd(i,l) <. ..< d(i,m) SL and {d(i’,1), . . . .
d(ijrn)}+ {d(i’’,l), . . . ,d(i’’,rn)} while i’= i“. In this case,
we did not consider the influence of noise.

D. Redundant Restoration Filter (M >L)

In this section, we try to suppress the noise by introducing
redundancy into the order of the restoration filter. That is, we
propose M ( > L)th -order restoration filter, that restore the
signals observed by the Lth-order system.

The restoration filter for first-order observation system
is derived by

B = $bm{l - r(so)}”
m=O

(11)

where

‘.=(-’)”[M:’)-(:::)-} ’12)
The restoration filter for the Lth-order observation system

is derived by

B = $b~{I - r(so)}m
m=O

where

( 13)

,( M-L ‘;) 1 Sdi.

bm=(-l)m$(-l)\m_l)~~“:O-sO.(1,4)
1=o 1=0 j=l

Fig. 1 shows a block diagram of the A4th-order restoration
filter for an Lth-order observation system.

E. Parameter Estimation under additive noise

To realize the restoration, B, parameters, such as SO,{b~ } and

f

Fig. 1. Mth -order Restoration filter for Lth-order observation
system.

M, are decided in advance.

The parameter of the band-limited operator, SO,affects
the precision of the restoration. The band-limited signal, ~,
approaches f by setting SOat as small a value as possible, in
order to satisfy

20 log~(~c )1= -3[dB]> ( 15)

where WCis the maximum angular frequency of the original
signal and P(o) is the frequency characteristics of P.

When the parameters of the observed operator, {s,}, are
unknown, {b~} are calculated by using an already-known step
signal as f. {bm} are obtained by satisfying

jbm{~-r(so)}mao=n
m.O

(16)

To decide the order of the restoration filter, M, we employ
evaluation functions that indicate the precision of restoration.
At first, we consider two types of relative errors. One is the
error between a band-limited signal and a restored signal,

J,= 1~- Baol/llflll, ( 17)

which expresses the power of noise. The other is the error

between an original signal and a restored signal,

J, = 11~-Baoll/lfl, ( 18)

which expresses the distortion of the signal. J1 is inverse
proportional to the order of the restoration filter while .JZis
proportional to that. Thus, we proposed new evaluation
function,

J, = J1(M)/J1(L) +J2(M)/J2(L), ( 19)

to decide the order of the restoration filter. JA evaluates both
shape and noise. The order, M, minimizing J~ becomes the

optimum order for restoration.
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order of restoration filter, M

Fig. 2. Optimum order of he restoration filter.
(L=2, sl, s2=0.03* jO.04, so=0.~5, -l@~.

III. SIMULATION

We confirmed restorative capabilities of the proposed filter,
by using the step signal. Fig. 2 shows the order of restoration
filter versus the value obtained by the evaluation function, Jg.
In this case, the optimum order was fourth.

The theory was applied to the ambulatory electro-
cardiogram system (Fig. 3). We assumed that the observation
system was second-order. White noise was added to the original
ECG signal. When the order of restoration filter was equal to
that of the observation system, the restored signal was noisy

(Fig.3 (c)). On the other hand, when the order was set to
forth, the noise of the signal was suppressed (Fig.3 (d)) and
the signal was roughly equal to the original one.

IV. CONCLUSION

Optimum restoration filters under additive noise were
proposed. These filters, composed of redundant linear
combination of fundamental filters, restored band-limited

approximations to their original signals in real-time. These
filters were applicable, not only to first-order measurement
systems, but also to those of a higher order. Furthermore,
they were applicable to both high and low-pass measurement

systems. We have determined that this method will be useful
in a broad ran~e of Dractical situations.

(a)

(c) (d)

Fig. 3. (a) Original ECG signal, fi (b) observed signal , ao, by

ambulatory ECG system (L=2), (c) restored signal (M=2), and (d)
restored signal (M=4).
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