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Abstract: The objective of this study was to explore 
suitable spatial filters for inverse estimation of cortical 
potentials from the scalp electroencephalogram. The 
effect of incorporating noise covariance into inverse 
procedures was examined by computer simulations 
and tested in human experiment. The par ametric 
projection filter, which allows inverse estimation with 
the presence of information on the noise, was applied 
to an inhomogeneous three-concentric-sphere model 
under various noise conditions in order to estimate the 
cortical potentials from the scalp potentials. The 
present simulation results suggest that incorporation 
of information on the noise covariance allows better 
estimation of cortical potentials, than inverse solutions 
without knowledge about the noise covariance, when 
the correlation between the signal and noise is low. 
The method for determining the optimum 
regularization parameter, which can be applied for 
parametric inverse techniques, is also discussed.  
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I. INTRODUCTION 

 
Brain electrical activity is spatially distributed over 

three dimensions of the brain and evolves in time. 
Electroencephalography (EEG) has historically been a 
useful modality to provide high temporal resolution 
regarding the underlying brain electrical activity. 
However, the spatial resolution of EEG is limited due to 
the smearing effect of the head volume conductor. In the 
past decades, much effort has been made in the 
development of high-resolution EEG techniques, which 
attempt to image and map spatially distributed brain 
electrical activity with substantially improved spatial 
resolution without ad hoc assumption on the number of 
source dipoles (for review, see [1]).  

Of particular interest is the recent development of 
cortical imaging approaches, in which an explicit 
biophysical model of the passive conducting properties of 
a head is used to deconvolve a measured scalp potential 
distribution into a distribution of electrical potential on 
the cortical surface [1]-[11]. Because the 
cortical-potential distribution can be experimentally 
measured [4, 12] and compared to the inverse imaging 
results, the cortical-potential imaging approach is also of 

physiologic importance.  
In parallel to the development of physical models for 

cortical potential imaging, the inverse regularization 
algorithm plays an important role in cortical imaging. 
Regularization strategies, such as general inverse with 
truncated singular value decomposition (TSVD), 
constrained least square method, and Tikhonov 
regularization method (TKNV), have been used to solve 
the ill-conditioned cortical imaging inverse problem (for 
review, see [1]). Several investigators have further 
explored the use of advanced regularization methods to 
improve the cortical imaging inverse results. Especially, 
Weiner reconstruction frameworks based on both signal 
and noise covariance have been investigated [13]-[16].  

In the present study, we hypothesize that a 
regularization approach incorporating information about 
noise covariance alone would improve the restorability of 
cortical potentials from scalp potentials, meanwhile 
eliminating the difficulty of estimating signal covariance. 
Since the noise covariance could be estimated from 
pre-stimulus evoked potentials, the proposed approach is 
practically feasible, while taking into consideration of the 
statistical properties of measurement noise. We 
investigated the equivalent dipole layer imaging by means 
of parametric projection filter (PPF), in which the noise 
covariance was taken into consideration [17]. In the 
present study, we examine the applicability of PPF to 
cortical potential imaging through computer simulations 
and experimental studies. We have also improved the 
algorithm to determine the regularization parameter.  

 
II. METHOD 

 
A. Principles of Cortical Potential Imaging 

In the present cortical potential imaging study, the head 
volume conductor is approximated by the inhomogeneous 
three-concentric sphere model and a closed dipole layer 
of 1280 dipoles are used [8]. This head model takes the 
variation in conductivity of different tissues, such as the 
scalp, the skull and the brain, into consideration. The 
detail of the cortical potential imaging technique being 
used in the present study is shown in [8]. The observation 
system of brain electrical activity on the scalp shall be 
defined by the following equation:  

  g = A f + n   (1) 



 

 

where f is the vector of the equivalent source distribution 
of a dipole layer, n is the vector of the additive noise and 
g is the vector of scalp-recorded potentials. A represents 
the transfer matrix from the equivalent source to the scalp 
potentials . The inverse process shall be defined by  

 f0 = B g  (2) 

where B is the restoration filter and f0 is the estimated 
source distribution of the dipole layer. Once f0 is 
estimated, the potential distribution on the cortical surface 
can be calculated through forward solution using the 
transfer matrix from the equivalent dipole layer to the 
cortical potentials [8].  

 
B. Inverse Techniques 

In the presence of noise, the truncated singular value 
decomposition (TSVD) can be used to calculate the 
pseudoinverse filter. Moreover, Tikhonov regularization 
method (TKNV) can be used, which leads to  

 B = A* (A A* + γ I) -1  (3) 

with γ a small positive number known as the 
regularization parameter, I the identity matrix and A* the 
transpose matrix of A. The parametric  projection filter 
(PPF), which allows estimating solutions in presence of 
information on noise covariance structure, has been 
introduced to solve the inverse problem [18]. The PPF is 
given by  

 B = A* (A A* + γ Q)-1. (4) 

where Q is the noise covariance derived from the 
expectation over the noise ensemble E[nn*]. The 
determination of the value of parameter γ is left to the 
subjective judgment of the user. We have applied the 
parametric projection filter to the inverse problem 
described by (2). In a clinical and experimental setting, 
the noise covariance may be estimated from data that is 
known to be source free, such as pre-stimulus data in 
evoked potentials [16].  

 
C. Parameter Estimation 

The restoration filters have a free parameter that 
determines the restorative ability. We have developed a 
new criterion for determining the optimum parameter 
without knowing the original source distribution. One 
possibility is to use the following procedure.  
1) Compute the restoration f0 using an initial value for γ, 
which should be relatively large to reduce the effect of 
additive noise on the coefficients.  
2) Calculate the following function:  

J(γ) = ||f0–BAf0||2+tr[BQB*]+2(Bg–BAf0, f0–BAf0). (5)  

3) Obtain new parameter γ1 by minimizing (5).   
4) Repeat 1) - 3) using new γ1 until ||γ – γ1|| / ||γ|| < e  
where e is a preset small number. 

In the previous parameter determination proposed in 
[17], the last term on the right hand side of (5), which 
corresponds to the inner product between restored noise 
and restorative error, was approximated by zero. In the 
present study, this term was kept in (5), and based on our 
experience, it will improve the inverse results because the 
correlation between signal and noise is negligible. The 
computer simulation results suggest that this procedure 
also provides the unique solution of γ despite of varying 
the initial value.  
 
D. Human Experimentation 

Human visual evoked potential (VEP) experiment was 
carried out to examine the performance of the proposed 
restoration method. One healthy subject was studied in 
accordance with a protocol approved by the Institutional 
Review Board of the University of Illinois at Chicago. 
96-channel VEP signals referenced to right earlobe were 
amplified with a gain of 500 and band-pass filtered from 
1 Hz to 200 Hz, and were acquired at a sampling rate of 1 
kHz. Half visual field pattern reversal check boards with 
reversal interval of 0.5 sec served as visual stimuli and 
400 reversals were recorded to obtain averaged VEP 
signals.  

 
III. RESULTS  

 
A. Simulation Results 

Fig. 1 shows an example of the normalized cortical and 
scalp potentials calculated directly from two radial 
dipoles with eccentricity of 0.75. The scalp potentials 
measured with 128 electrodes were  contaminated with 
10 % edge-concentrated noise. Note that the two poles in 
the cortical potential dis tribution (a) are indistinguishable 
in the scalp potential distribution (b).  

Fig. 2 shows the relative error versus the eccentricity of 
dipoles in three inverse techniques. Two dipoles, located 
at the center position with varying eccentricity were used 
as the sources. In the case of center-concentrated 
distribution of dipole as shown in Fig. 1 (a), the present 
method was effective for edge-concentrated non-uniform 
noise. The results of the present method were similar to 
that of the TSVD and the TKNV in the cases of the 
Gaussian white noise and one-side or center-concentrated 
non-uniform noise.  

Fig. 3 shows an example of the inverse solution of the 
estimated cortical potential distribution. The eccentricity 
of two radial dipoles was 0.75. 10 % edge-concentrated 
non-uniform noise was added to the scalp potential. Fig. 3 
(a) shows the analytic cortical potential distribution. It is 
clear that the PPF (Fig. 3 (d)) has better performance in 
reconstructing the two radial dipole sources as compared 
to the TSVD (Fig.3 (b)) and TKNV (Fig. 3 (c)) methods. 
 



 

 

 
 
Fig. 1 One example of the normalized (a) cortical and (b) scalp 
potentials. Two radial dipoles were located with the eccentricity 
of 0.75.  
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Fig. 2 Eccentricity vs. relative errors. The scalp potentials were 
contaminated with (a) GWN and (b) edge-, (c) center-, and (d) 
on side-concentrated non-uniform noise.  
 
B. Application to the VEP Experiment 

The pattern reversal VEP data at the P100 were 
analyzed by the restoration filters of the TSVD, TKNV, 
and PPF. Fig. 4 shows an example of the normalized scalp 
potential map and the estimated cortical potential maps in 
a healthy subject. As shown in Fig. 4 (a) in response to 
the left visual field stimuli, a dominant positive potential 
component was elicited with a widespread distribution on 
the bilateral scalp. However, the estimated cortical 
potential map reveals a dominant in the right visual cortex. 
Note that the PPF (Fig. 4 (b)) gives more localized 
inverse solution than the TSVD (Fig. 4 (c)) and TKNV 
(Fig. 4 (d)). 

 
IV DISCUSSION 

 
Research progress in the past decade has 
established the high-resolution EEG 
methodologies for imaging brain electrical 
activity. The cortical imaging approaches are 

virtually applicable to any kind of brain source 
distribution (both localized and distributed) [1]. This is 
due to the generalized nature of the equivalent surface 
source models behind the cortical imaging techniques. 
These tec hniques should be useful particularly for 
localizing and imaging cortical sources.  

Noise plays an important role in cortical potential 
imaging, as in any other ill-posed inverse problem. In the 
present study, we have investigated the performance of 
cortical potential imaging by considering noise covariance 
through the use of parametric projection filter. The present 
study demonstrates that enhanced performance can be 
obtained in cortical potential imaging by considering the 
noise covariance.  

The present results suggest that, the proposed method is 
effective in improving performance of cortical imaging, 
under the condition of low correlation between signal and 
noise. The present method would have similar restorative 
ability to the regularization procedures without 
considering the information of noise covariance, under the 
condition of high correlation between signal and noise.  

Parameter estimation methods in conventional 
regularization procedures have been used in cortical 
potential imaging, such as the  L-curve approach [19], 
zero-crossing approach [20], and minimum product 
approach [21]. The present parameter estimation method 
is directly derived from the aim of this study that 
minimizing the error between the original and estimated 
signal. The present algorithm for determining the 
regularization parameter may be applied to other 
parametric inverse estimation procedures, such as the 
TSVD, TKNV, etc.  
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Fig. 3 One example of the estimated inverse solutions of cortical 
potential imaging. A 10% edge-concentrated non-uniform noise 
was added to the scalp potential (a) Actual cortical potential 
map. Cortical potential maps estimated by the (b) TSVD, (c) 
TKNV, and (d) PPF.  

 

 

 
 

Fig. 4 Application of the restoration filters to cortical potential 
imaging in human subject. (a) Scalp potential map recorded at 
P100 in response to the left visual stimuli. Cortical potential 
maps estimated by the (b) TSVD, (c) TKNV, and (d) PPF. 
 
 
 

 


